ADMB Documentation  11.5.3197
 All Classes Files Functions Variables Typedefs Friends Defines
Functions
Functions Useful in Ecology.
User-Contributed Libraries.

Functions

dvariable generalized_Ricker1 (const double &x, const prevariable &x0, const prevariable &A, const prevariable &alpha)
 generalized Ricker function, first parameerization; scalar
dvar_vector generalized_Ricker1 (const dvector &x, const prevariable &x0, const prevariable &A, const prevariable &alpha)
 generalized Ricker function, first parameerization; vectorized
dvar_vector generalized_Ricker1 (const dvector &x, const dvar_vector &x0, const prevariable &A, const prevariable &alpha)
 generalized Ricker function, first parameerization; vectorized
dvar_vector generalized_Ricker1 (const dvector &x, const prevariable &x0, const dvar_vector &A, const prevariable &alpha)
 generalized Ricker function, first parameerization; vectorized
dvar_vector generalized_Ricker1 (const dvector &x, const dvar_vector &x0, const dvar_vector &A, const prevariable &alpha)
 generalized Ricker function, first parameerization; vectorized
dvar_vector generalized_Ricker1 (const dvector &x, const prevariable &x0, const prevariable &A, const dvar_vector &alpha)
 generalized Ricker function, first parameerization; vectorized
dvar_vector generalized_Ricker1 (const dvector &x, const dvar_vector &x0, const prevariable &A, const dvar_vector &alpha)
 generalized Ricker function, first parameerization; vectorized
dvar_vector generalized_Ricker1 (const dvector &x, const prevariable &x0, const dvar_vector &A, const dvar_vector &alpha)
 generalized Ricker function, first parameerization; vectorized
dvar_vector generalized_Ricker1 (const dvector &x, const dvar_vector &x0, const dvar_vector &A, const dvar_vector &alpha)
 generalized Ricker function, first parameerization; vectorized
df1b2variable generalized_Ricker1 (const double &x, const df1b2variable &x0, const df1b2variable &A, const df1b2variable &alpha)
 generalized Ricker function, first parameerization; random effects scalar
df1b2vector generalized_Ricker1 (const dvector &x, const df1b2variable &x0, const df1b2variable &A, const df1b2variable &alpha)
 generalized Ricker function, first parameerization; random effects vectorized
df1b2vector generalized_Ricker1 (const dvector &x, const df1b2vector &x0, const df1b2variable &A, const df1b2variable &alpha)
 generalized Ricker function, first parameerization; random effects vectorized
df1b2vector generalized_Ricker1 (const dvector &x, const df1b2variable &x0, const df1b2vector &A, const df1b2variable &alpha)
 generalized Ricker function, first parameerization; random effects vectorized
df1b2vector generalized_Ricker1 (const dvector &x, const df1b2vector &x0, const df1b2vector &A, const df1b2variable &alpha)
 generalized Ricker function, first parameerization; random effects vectorized
df1b2vector generalized_Ricker1 (const dvector &x, const df1b2variable &x0, const df1b2variable &A, const df1b2vector &alpha)
 generalized Ricker function, first parameerization; random effects vectorized
df1b2vector generalized_Ricker1 (const dvector &x, const df1b2vector &x0, const df1b2variable &A, const df1b2vector &alpha)
 generalized Ricker function, first parameerization; random effects vectorized
df1b2vector generalized_Ricker1 (const dvector &x, const df1b2variable &x0, const df1b2vector &A, const df1b2vector &alpha)
 generalized Ricker function, first parameerization; random effects vectorized
df1b2vector generalized_Ricker1 (const dvector &x, const df1b2vector &x0, const df1b2vector &A, const df1b2vector &alpha)
 generalized Ricker function, first parameerization; random effects vectorized
dvariable generalized_Ricker2 (const double &x, const prevariable &r, const prevariable &a, const prevariable &alpha)
 generalized Ricker function, second parameerization; scalar
dvar_vector generalized_Ricker2 (const dvector &x, const prevariable &r, const prevariable &a, const prevariable &alpha)
 generalized Ricker function, second parameerization; vectorized
dvar_vector generalized_Ricker2 (const dvector &x, const dvar_vector &r, const prevariable &a, const prevariable &alpha)
 generalized Ricker function, second parameerization; vectorized
dvar_vector generalized_Ricker2 (const dvector &x, const prevariable &r, const dvar_vector &a, const prevariable &alpha)
 generalized Ricker function, second parameerization; vectorized
dvar_vector generalized_Ricker2 (const dvector &x, const dvar_vector &r, const dvar_vector &a, const prevariable &alpha)
 generalized Ricker function, second parameerization; vectorized
dvar_vector generalized_Ricker2 (const dvector &x, const prevariable &r, const prevariable &a, const dvar_vector &alpha)
 generalized Ricker function, second parameerization; vectorized
dvar_vector generalized_Ricker2 (const dvector &x, const dvar_vector &r, const prevariable &a, const dvar_vector &alpha)
 generalized Ricker function, second parameerization; vectorized
dvar_vector generalized_Ricker2 (const dvector &x, const prevariable &r, const dvar_vector &a, const dvar_vector &alpha)
 generalized Ricker function, second parameerization; vectorized
dvar_vector generalized_Ricker2 (const dvector &x, const dvar_vector &r, const dvar_vector &a, const dvar_vector &alpha)
 generalized Ricker function, second parameerization; vectorized
df1b2variable generalized_Ricker2 (const double &x, const df1b2variable &r, const df1b2variable &a, const df1b2variable &alpha)
 generalized Ricker function, second parameerization; random effects scalar
df1b2vector generalized_Ricker2 (const dvector &x, const df1b2variable &r, const df1b2variable &a, const df1b2variable &alpha)
 generalized Ricker function, second parameerization; random effects vectorized
df1b2vector generalized_Ricker2 (const dvector &x, const df1b2vector &r, const df1b2variable &a, const df1b2variable &alpha)
 generalized Ricker function, second parameerization; random effects vectorized
df1b2vector generalized_Ricker2 (const dvector &x, const df1b2variable &r, const df1b2vector &a, const df1b2variable &alpha)
 generalized Ricker function, second parameerization; random effects vectorized
df1b2vector generalized_Ricker2 (const dvector &x, const df1b2vector &r, const df1b2vector &a, const df1b2variable &alpha)
 generalized Ricker function, second parameerization; random effects vectorized
df1b2vector generalized_Ricker2 (const dvector &x, const df1b2variable &r, const df1b2variable &a, const df1b2vector &alpha)
 generalized Ricker function, second parameerization; random effects vectorized
df1b2vector generalized_Ricker2 (const dvector &x, const df1b2vector &r, const df1b2variable &a, const df1b2vector &alpha)
 generalized Ricker function, second parameerization; random effects vectorized
df1b2vector generalized_Ricker2 (const dvector &x, const df1b2variable &r, const df1b2vector &a, const df1b2vector &alpha)
 generalized Ricker function, second parameerization; random effects vectorized
df1b2vector generalized_Ricker2 (const dvector &x, const df1b2vector &r, const df1b2vector &a, const df1b2vector &alpha)
 generalized Ricker function, second parameerization; random effects vectorized
dvariable Gompertz (const double &x, const prevariable &a, const prevariable &b)
 Gompertz function; scalar.
dvar_vector Gompertz (const dvector &x, const prevariable &a, const prevariable &b)
 Gompertz function; vectorized.
dvar_vector Gompertz (const dvector &x, const dvar_vector &a, const prevariable &b)
 Gompertz function; vectorized.
dvar_vector Gompertz (const dvector &x, const prevariable &a, const dvar_vector &b)
 Gompertz function; vectorized.
dvar_vector Gompertz (const dvector &x, const dvar_vector &a, const dvar_vector &b)
 Gompertz function; vectorized.
df1b2variable Gompertz (const double &x, const df1b2variable &a, const df1b2variable &b)
 Gompertz function; random effects scalar.
df1b2vector Gompertz (const dvector &x, const df1b2variable &a, const df1b2variable &b)
 Gompertz function; random effects vectorized.
df1b2vector Gompertz (const dvector &x, const df1b2vector &a, const df1b2variable &b)
 Gompertz function; random effects vectorized.
df1b2vector Gompertz (const dvector &x, const df1b2variable &a, const df1b2vector &b)
 Gompertz function; random effects vectorized.
df1b2vector Gompertz (const dvector &x, const df1b2vector &a, const df1b2vector &b)
 Gompertz function; random effects vectorized.
dvariable Hassell (const double &x, const prevariable &a, const prevariable &b, const prevariable &c)
 Hassell function scalar.
dvar_vector Hassell (const dvector &x, const prevariable &a, const prevariable &b, const prevariable &c)
 Hassell function vectorized.
dvar_vector Hassell (const dvector &x, const dvar_vector &a, const prevariable &b, const prevariable &c)
 Hassell function vectorized.
dvar_vector Hassell (const dvector &x, const prevariable &a, const dvar_vector &b, const prevariable &c)
 Hassell function vectorized.
dvar_vector Hassell (const dvector &x, const dvar_vector &a, const dvar_vector &b, const prevariable &c)
 Hassell function vectorized.
dvar_vector Hassell (const dvector &x, const prevariable &a, const prevariable &b, const dvar_vector &c)
 Hassell function vectorized.
dvar_vector Hassell (const dvector &x, const dvar_vector &a, const prevariable &b, const dvar_vector &c)
 Hassell function vectorized.
dvar_vector Hassell (const dvector &x, const prevariable &a, const dvar_vector &b, const dvar_vector &c)
 Hassell function vectorized.
dvar_vector Hassell (const dvector &x, const dvar_vector &a, const dvar_vector &b, const dvar_vector &c)
 Hassell function vectorized.
df1b2variable Hassell (const double &x, const df1b2variable &a, const df1b2variable &b, const df1b2variable &c)
 Hassell function random effects scalar.
df1b2vector Hassell (const dvector &x, const df1b2variable &a, const df1b2variable &b, const df1b2variable &c)
 Hassell function random effects vectorized.
df1b2vector Hassell (const dvector &x, const df1b2vector &a, const df1b2variable &b, const df1b2variable &c)
 Hassell function random effects vectorized.
df1b2vector Hassell (const dvector &x, const df1b2variable &a, const df1b2vector &b, const df1b2variable &c)
 Hassell function random effects vectorized.
df1b2vector Hassell (const dvector &x, const df1b2vector &a, const df1b2vector &b, const df1b2variable &c)
 Hassell function random effects vectorized.
df1b2vector Hassell (const dvector &x, const df1b2variable &a, const df1b2variable &b, const df1b2vector &c)
 Hassell function random effects vectorized.
df1b2vector Hassell (const dvector &x, const df1b2vector &a, const df1b2variable &b, const df1b2vector &c)
 Hassell function random effects vectorized.
df1b2vector Hassell (const dvector &x, const df1b2variable &a, const df1b2vector &b, const df1b2vector &c)
 Hassell function random effects vectorized.
df1b2vector Hassell (const dvector &x, const df1b2vector &a, const df1b2vector &b, const df1b2vector &c)
 Hassell function random effects vectorized.
dvariable Hill (const double &x, const prevariable &a, const prevariable &b, const prevariable &c)
 Hill function; scalar.
dvar_vector Hill (const dvector &x, const prevariable &a, const prevariable &b, const prevariable &c)
 Hill function; vectorized.
dvar_vector Hill (const dvector &x, const dvar_vector &a, const prevariable &b, const prevariable &c)
 Hill function; vectorized.
dvar_vector Hill (const dvector &x, const prevariable &a, const dvar_vector &b, const prevariable &c)
 Hill function; vectorized.
dvar_vector Hill (const dvector &x, const dvar_vector &a, const dvar_vector &b, const prevariable &c)
 Hill function; vectorized.
dvar_vector Hill (const dvector &x, const prevariable &a, const prevariable &b, const dvar_vector &c)
 Hill function; vectorized.
dvar_vector Hill (const dvector &x, const dvar_vector &a, const prevariable &b, const dvar_vector &c)
 Hill function; vectorized.
dvar_vector Hill (const dvector &x, const prevariable &a, const dvar_vector &b, const dvar_vector &c)
 Hill function; vectorized.
dvar_vector Hill (const dvector &x, const dvar_vector &a, const dvar_vector &b, const dvar_vector &c)
 Hill function; vectorized.
df1b2variable Hill (const double &x, const df1b2variable &a, const df1b2variable &b, const df1b2variable &c)
 Hill function; random effects scalar.
df1b2vector Hill (const dvector &x, const df1b2variable &a, const df1b2variable &b, const df1b2variable &c)
 Hill function; random effects vectorized.
df1b2vector Hill (const dvector &x, const df1b2vector &a, const df1b2variable &b, const df1b2variable &c)
 Hill function; random effects vectorized.
df1b2vector Hill (const dvector &x, const df1b2variable &a, const df1b2vector &b, const df1b2variable &c)
 Hill function; random effects vectorized.
df1b2vector Hill (const dvector &x, const df1b2vector &a, const df1b2vector &b, const df1b2variable &c)
 Hill function; random effects vectorized.
df1b2vector Hill (const dvector &x, const df1b2variable &a, const df1b2variable &b, const df1b2vector &c)
 Hill function; random effects vectorized.
df1b2vector Hill (const dvector &x, const df1b2vector &a, const df1b2variable &b, const df1b2vector &c)
 Hill function; random effects vectorized.
df1b2vector Hill (const dvector &x, const df1b2variable &a, const df1b2vector &b, const df1b2vector &c)
 Hill function; random effects vectorized.
df1b2vector Hill (const dvector &x, const df1b2vector &a, const df1b2vector &b, const df1b2vector &c)
 Hill function; random effects vectorized.
dvariable HollingII (const double &x, const prevariable &alpha, const prevariable &h)
 HollingII scalar.
dvar_vector HollingII (const dvector &x, const prevariable &alpha, const prevariable &h)
 HollingII vectorized.
dvar_vector HollingII (const dvector &x, const dvar_vector &alpha, const prevariable &h)
 HollingII vectorized.
dvar_vector HollingII (const dvector &x, const prevariable &alpha, const dvar_vector &h)
 HollingII vectorized.
dvar_vector HollingII (const dvector &x, const dvar_vector &alpha, const dvar_vector &h)
 HollingII vectorized.
df1b2variable HollingII (const double &x, const df1b2variable &alpha, const df1b2variable &h)
 HollingII random effects scalar.
df1b2vector HollingII (const dvector &x, const df1b2variable &alpha, const df1b2variable &h)
 HollingII random effects vectorized.
df1b2vector HollingII (const dvector &x, const df1b2vector &alpha, const df1b2variable &h)
 HollingII random effects vectorized.
df1b2vector HollingII (const dvector &x, const df1b2variable &alpha, const df1b2vector &h)
 HollingII random effects vectorized.
df1b2vector HollingII (const dvector &x, const df1b2vector &alpha, const df1b2vector &h)
 HollingII random effects vectorized.
dvariable HollingIII (const double &x, const prevariable &a, const prevariable &b)
 Holling Type III function; scalar.
dvar_vector HollingIII (const dvector &x, const prevariable &a, const prevariable &b)
 Holling Type III function; vectorized.
dvar_vector HollingIII (const dvector &x, const dvar_vector &a, const prevariable &b)
 Holling Type III function; vectorized.
dvar_vector HollingIII (const dvector &x, const prevariable &a, const dvar_vector &b)
 Holling Type III function; vectorized.
dvar_vector HollingIII (const dvector &x, const dvar_vector &a, const dvar_vector &b)
 Holling Type III function; vectorized.
df1b2variable HollingIII (const double &x, const df1b2variable &a, const df1b2variable &b)
 Holling Type III function; random effects scalar.
df1b2vector HollingIII (const dvector &x, const df1b2variable &a, const df1b2variable &b)
 Holling Type III function; random effects vectorized.
df1b2vector HollingIII (const dvector &x, const df1b2vector &a, const df1b2variable &b)
 Holling Type III function; random effects vectorized.
df1b2vector HollingIII (const dvector &x, const df1b2variable &a, const df1b2vector &b)
 Holling Type III function; random effects vectorized.
df1b2vector HollingIII (const dvector &x, const df1b2vector &a, const df1b2vector &b)
 Holling Type III function; random effects vectorized.
dvariable HollingIV (const double &x, const prevariable &a, const prevariable &b, const prevariable &c)
 Holling Type IV function; scalar.
dvar_vector HollingIV (const dvector &x, const prevariable &a, const prevariable &b, const prevariable &c)
 Holling Type IV function; vectorized.
dvar_vector HollingIV (const dvector &x, const dvar_vector &a, const prevariable &b, const prevariable &c)
 Holling Type IV function; vectorized.
dvar_vector HollingIV (const dvector &x, const prevariable &a, const dvar_vector &b, const prevariable &c)
 Holling Type IV function; vectorized.
dvar_vector HollingIV (const dvector &x, const dvar_vector &a, const dvar_vector &b, const prevariable &c)
 Holling Type IV function; vectorized.
dvar_vector HollingIV (const dvector &x, const prevariable &a, const prevariable &b, const dvar_vector &c)
 Holling Type IV function; vectorized.
dvar_vector HollingIV (const dvector &x, const dvar_vector &a, const prevariable &b, const dvar_vector &c)
 Holling Type IV function; vectorized.
dvar_vector HollingIV (const dvector &x, const prevariable &a, const dvar_vector &b, const dvar_vector &c)
 Holling Type IV function; vectorized.
dvar_vector HollingIV (const dvector &x, const dvar_vector &a, const dvar_vector &b, const dvar_vector &c)
 Holling Type IV function; vectorized.
df1b2variable HollingIV (const double &x, const df1b2variable &a, const df1b2variable &b, const df1b2variable &c)
 Holling Type IV function; random effects scalar.
df1b2vector HollingIV (const dvector &x, const df1b2variable &a, const df1b2variable &b, const df1b2variable &c)
 Holling Type IV function; random effects vectorized.
df1b2vector HollingIV (const dvector &x, const df1b2vector &a, const df1b2variable &b, const df1b2variable &c)
 Holling Type IV function; random effects vectorized.
df1b2vector HollingIV (const dvector &x, const df1b2variable &a, const df1b2vector &b, const df1b2variable &c)
 Holling Type IV function; random effects vectorized.
df1b2vector HollingIV (const dvector &x, const df1b2vector &a, const df1b2vector &b, const df1b2variable &c)
 Holling Type IV function; random effects vectorized.
df1b2vector HollingIV (const dvector &x, const df1b2variable &a, const df1b2variable &b, const df1b2vector &c)
 Holling Type IV function; random effects vectorized.
df1b2vector HollingIV (const dvector &x, const df1b2vector &a, const df1b2variable &b, const df1b2vector &c)
 Holling Type IV function; random effects vectorized.
df1b2vector HollingIV (const dvector &x, const df1b2variable &a, const df1b2vector &b, const df1b2vector &c)
 Holling Type IV function; random effects vectorized.
df1b2vector HollingIV (const dvector &x, const df1b2vector &a, const df1b2vector &b, const df1b2vector &c)
 Holling Type IV function; random effects vectorized.
dvariable logistic (const double &x, const prevariable &a, const prevariable &b)
 logistic function; scalar
dvar_vector logistic (const dvector &x, const prevariable &a, const prevariable &b)
 logistic function; vectorized
dvar_vector logistic (const dvector &x, const dvar_vector &a, const prevariable &b)
 logistic function; vectorized
dvar_vector logistic (const dvector &x, const prevariable &a, const dvar_vector &b)
 logistic function; vectorized
dvar_vector logistic (const dvector &x, const dvar_vector &a, const dvar_vector &b)
 logistic function; vectorized
df1b2variable logistic (const double &x, const df1b2variable &a, const df1b2variable &b)
 logistic function; random effects scalar
df1b2vector logistic (const dvector &x, const df1b2variable &a, const df1b2variable &b)
 logistic function; random effects vectorized
df1b2vector logistic (const dvector &x, const df1b2vector &a, const df1b2variable &b)
 logistic function; random effects vectorized
df1b2vector logistic (const dvector &x, const df1b2variable &a, const df1b2vector &b)
 logistic function; random effects vectorized
df1b2vector logistic (const dvector &x, const df1b2vector &a, const df1b2vector &b)
 logistic function; random effects vectorized
dvariable logistic3 (const double &x, const prevariable &a, const prevariable &b, const prevariable &c)
 logistic function with carrying capacity c; scalar
dvar_vector logistic3 (const dvector &x, const prevariable &a, const prevariable &b, const prevariable &c)
 logistic function with carrying capacity c; vectorized
dvar_vector logistic3 (const dvector &x, const dvar_vector &a, const prevariable &b, const prevariable &c)
 logistic function with carrying capacity c; vectorized
dvar_vector logistic3 (const dvector &x, const prevariable &a, const dvar_vector &b, const prevariable &c)
 logistic function with carrying capacity c; vectorized
dvar_vector logistic3 (const dvector &x, const dvar_vector &a, const dvar_vector &b, const prevariable &c)
 logistic function with carrying capacity c; vectorized
dvar_vector logistic3 (const dvector &x, const prevariable &a, const prevariable &b, const dvar_vector &c)
 logistic function with carrying capacity c; vectorized
dvar_vector logistic3 (const dvector &x, const dvar_vector &a, const prevariable &b, const dvar_vector &c)
 logistic function with carrying capacity c; vectorized
dvar_vector logistic3 (const dvector &x, const prevariable &a, const dvar_vector &b, const dvar_vector &c)
 logistic function with carrying capacity c; vectorized
dvar_vector logistic3 (const dvector &x, const dvar_vector &a, const dvar_vector &b, const dvar_vector &c)
 logistic function with carrying capacity c; vectorized
df1b2variable logistic3 (const double &x, const df1b2variable &a, const df1b2variable &b, const df1b2variable &c)
 logistic function with carrying capacity c; random effects scalar
df1b2vector logistic3 (const dvector &x, const df1b2variable &a, const df1b2variable &b, const df1b2variable &c)
 logistic function with carrying capacity c; random effects vectorized
df1b2vector logistic3 (const dvector &x, const df1b2vector &a, const df1b2variable &b, const df1b2variable &c)
 logistic function with carrying capacity c; random effects vectorized
df1b2vector logistic3 (const dvector &x, const df1b2variable &a, const df1b2vector &b, const df1b2variable &c)
 logistic function with carrying capacity c; random effects vectorized
df1b2vector logistic3 (const dvector &x, const df1b2vector &a, const df1b2vector &b, const df1b2variable &c)
 logistic function with carrying capacity c; random effects vectorized
df1b2vector logistic3 (const dvector &x, const df1b2variable &a, const df1b2variable &b, const df1b2vector &c)
 logistic function with carrying capacity c; random effects vectorized
df1b2vector logistic3 (const dvector &x, const df1b2vector &a, const df1b2variable &b, const df1b2vector &c)
 logistic function with carrying capacity c; random effects vectorized
df1b2vector logistic3 (const dvector &x, const df1b2variable &a, const df1b2vector &b, const df1b2vector &c)
 logistic function with carrying capacity c; random effects vectorized
df1b2vector logistic3 (const dvector &x, const df1b2vector &a, const df1b2vector &b, const df1b2vector &c)
 logistic function with carrying capacity c; random effects vectorized
dvariable logisticK (const double &t, const prevariable &K, const prevariable &r, const prevariable &n0)
 ecologically parameterized logistic function with carrying capacity K; scalar
dvar_vector logisticK (const dvector &t, const prevariable &K, const prevariable &r, const prevariable &n0)
 ecologically parameterized logistic function with carrying capacity K; vectorized
dvar_vector logisticK (const dvector &t, const dvar_vector &K, const prevariable &r, const prevariable &n0)
 ecologically parameterized logistic function with carrying capacity K; vectorized
dvar_vector logisticK (const dvector &t, const prevariable &K, const dvar_vector &r, const prevariable &n0)
 ecologically parameterized logistic function with carrying capacity K; vectorized
dvar_vector logisticK (const dvector &t, const dvar_vector &K, const dvar_vector &r, const prevariable &n0)
 ecologically parameterized logistic function with carrying capacity K; vectorized
dvar_vector logisticK (const dvector &t, const prevariable &K, const prevariable &r, const dvar_vector &n0)
 ecologically parameterized logistic function with carrying capacity K; vectorized
dvar_vector logisticK (const dvector &t, const dvar_vector &K, const prevariable &r, const dvar_vector &n0)
 ecologically parameterized logistic function with carrying capacity K; vectorized
dvar_vector logisticK (const dvector &t, const prevariable &K, const dvar_vector &r, const dvar_vector &n0)
 ecologically parameterized logistic function with carrying capacity K; vectorized
dvar_vector logisticK (const dvector &t, const dvar_vector &K, const dvar_vector &r, const dvar_vector &n0)
 ecologically parameterized logistic function with carrying capacity K; vectorized
df1b2variable logisticK (const double &t, const df1b2variable &K, const df1b2variable &r, const df1b2variable &n0)
 ecologically parameterized logistic function with carrying capacity K; random effects scalar
df1b2vector logisticK (const dvector &t, const df1b2variable &K, const df1b2variable &r, const df1b2variable &n0)
 ecologically parameterized logistic function with carrying capacity K; random effects vectorized
df1b2vector logisticK (const dvector &t, const df1b2vector &K, const df1b2variable &r, const df1b2variable &n0)
 ecologically parameterized logistic function with carrying capacity K; random effects vectorized
df1b2vector logisticK (const dvector &t, const df1b2variable &K, const df1b2vector &r, const df1b2variable &n0)
 ecologically parameterized logistic function with carrying capacity K; random effects vectorized
df1b2vector logisticK (const dvector &t, const df1b2vector &K, const df1b2vector &r, const df1b2variable &n0)
 ecologically parameterized logistic function with carrying capacity K; random effects vectorized
df1b2vector logisticK (const dvector &t, const df1b2variable &K, const df1b2variable &r, const df1b2vector &n0)
 ecologically parameterized logistic function with carrying capacity K; random effects vectorized
df1b2vector logisticK (const dvector &t, const df1b2vector &K, const df1b2variable &r, const df1b2vector &n0)
 ecologically parameterized logistic function with carrying capacity K; random effects vectorized
df1b2vector logisticK (const dvector &t, const df1b2variable &K, const df1b2vector &r, const df1b2vector &n0)
 ecologically parameterized logistic function with carrying capacity K; random effects vectorized
df1b2vector logisticK (const dvector &t, const df1b2vector &K, const df1b2vector &r, const df1b2vector &n0)
 ecologically parameterized logistic function with carrying capacity K; random effects vectorized
dvariable Michaelis_Menten1 (const double &x, const prevariable &a, const prevariable &b)
 Michaelis Menten function, 1st parametarization; scalar.
dvar_vector Michaelis_Menten1 (const dvector &x, const prevariable &a, const prevariable &b)
 Michaelis Menten function, 1st parametarization; vectorized.
dvar_vector Michaelis_Menten1 (const dvector &x, const dvar_vector &a, const prevariable &b)
 Michaelis Menten function, 1st parametarization; vectorized.
dvar_vector Michaelis_Menten1 (const dvector &x, const prevariable &a, const dvar_vector &b)
 Michaelis Menten function, 1st parametarization; vectorized.
dvar_vector Michaelis_Menten1 (const dvector &x, const dvar_vector &a, const dvar_vector &b)
 Michaelis Menten function, 1st parametarization; vectorized.
df1b2variable Michaelis_Menten1 (const double &x, const df1b2variable &a, const df1b2variable &b)
 Michaelis Menten function, 1st parametarization; random effects scalar.
df1b2vector Michaelis_Menten1 (const dvector &x, const df1b2variable &a, const df1b2variable &b)
 Michaelis Menten function, 1st parametarization; random effects vectorized.
df1b2vector Michaelis_Menten1 (const dvector &x, const df1b2vector &a, const df1b2variable &b)
 Michaelis Menten function, 1st parametarization; random effects vectorized.
df1b2vector Michaelis_Menten1 (const dvector &x, const df1b2variable &a, const df1b2vector &b)
 Michaelis Menten function, 1st parametarization; random effects vectorized.
df1b2vector Michaelis_Menten1 (const dvector &x, const df1b2vector &a, const df1b2vector &b)
 Michaelis Menten function, 1st parametarization; random effects vectorized.
dvariable Michaelis_Menten2 (const double &x, const prevariable &a, const prevariable &b)
 Michaelis Menten function, 2nd parameterization; scalar.
dvar_vector Michaelis_Menten2 (const dvector &x, const prevariable &a, const prevariable &b)
 Michaelis Menten function, 2nd parameterization; vectorized.
dvar_vector Michaelis_Menten2 (const dvector &x, const dvar_vector &a, const prevariable &b)
 Michaelis Menten function, 2nd parameterization; vectorized.
dvar_vector Michaelis_Menten2 (const dvector &x, const prevariable &a, const dvar_vector &b)
 Michaelis Menten function, 2nd parameterization; vectorized.
dvar_vector Michaelis_Menten2 (const dvector &x, const dvar_vector &a, const dvar_vector &b)
 Michaelis Menten function, 2nd parameterization; vectorized.
df1b2variable Michaelis_Menten2 (const double &x, const df1b2variable &a, const df1b2variable &b)
 Michaelis Menten function, 2nd parameterization; random effects scalar.
df1b2vector Michaelis_Menten2 (const dvector &x, const df1b2variable &a, const df1b2variable &b)
 Michaelis Menten function, 2nd parameterization; random effects vectorized.
df1b2vector Michaelis_Menten2 (const dvector &x, const df1b2vector &a, const df1b2variable &b)
 Michaelis Menten function, 2nd parameterization; random effects vectorized.
df1b2vector Michaelis_Menten2 (const dvector &x, const df1b2variable &a, const df1b2vector &b)
 Michaelis Menten function, 2nd parameterization; random effects vectorized.
df1b2vector Michaelis_Menten2 (const dvector &x, const df1b2vector &a, const df1b2vector &b)
 Michaelis Menten function, 2nd parameterization; random effects vectorized.
dvariable monomolecular (const double &x, const prevariable &a, const prevariable &b)
 monomoleular function; scalar
dvar_vector monomolecular (const dvector &x, const prevariable &a, const prevariable &b)
 monomoleular function; vectorized
dvar_vector monomolecular (const dvector &x, const dvar_vector &a, const prevariable &b)
 monomoleular function; vectorized
dvar_vector monomolecular (const dvector &x, const prevariable &a, const dvar_vector &b)
 monomoleular function; vectorized
dvar_vector monomolecular (const dvector &x, const dvar_vector &a, const dvar_vector &b)
 monomoleular function; vectorized
df1b2variable monomolecular (const double &x, const df1b2variable &a, const df1b2variable &b)
 monomoleular function; random effects scalar
df1b2vector monomolecular (const dvector &x, const df1b2variable &a, const df1b2variable &b)
 monomoleular function; random effects vectorized
df1b2vector monomolecular (const dvector &x, const df1b2vector &a, const df1b2variable &b)
 monomoleular function; random effects vectorized
df1b2vector monomolecular (const dvector &x, const df1b2variable &a, const df1b2vector &b)
 monomoleular function; random effects vectorized
df1b2vector monomolecular (const dvector &x, const df1b2vector &a, const df1b2vector &b)
 monomoleular function; random effects vectorized
dvariable nonrectangular_hyperbola (const double &x, const prevariable &theta, const prevariable &alpha, const prevariable &pmax)
 nonrectangular hyperbolic function; scalar
dvar_vector nonrectangular_hyperbola (const dvector &x, const prevariable &theta, const prevariable &alpha, const prevariable &pmax)
 nonrectangular hyperbolic function; vectorized
dvar_vector nonrectangular_hyperbola (const dvector &x, const dvar_vector &theta, const prevariable &alpha, const prevariable &pmax)
 nonrectangular hyperbolic function; vectorized
dvar_vector nonrectangular_hyperbola (const dvector &x, const prevariable &theta, const dvar_vector &alpha, const prevariable &pmax)
 nonrectangular hyperbolic function; vectorized
dvar_vector nonrectangular_hyperbola (const dvector &x, const dvar_vector &theta, const dvar_vector &alpha, const prevariable &pmax)
 nonrectangular hyperbolic function; vectorized
dvar_vector nonrectangular_hyperbola (const dvector &x, const prevariable &theta, const prevariable &alpha, const dvar_vector &pmax)
 nonrectangular hyperbolic function; vectorized
dvar_vector nonrectangular_hyperbola (const dvector &x, const dvar_vector &theta, const prevariable &alpha, const dvar_vector &pmax)
 nonrectangular hyperbolic function; vectorized
dvar_vector nonrectangular_hyperbola (const dvector &x, const prevariable &theta, const dvar_vector &alpha, const dvar_vector &pmax)
 nonrectangular hyperbolic function; vectorized
dvar_vector nonrectangular_hyperbola (const dvector &x, const dvar_vector &theta, const dvar_vector &alpha, const dvar_vector &pmax)
 nonrectangular hyperbolic function; vectorized
df1b2variable nonrectangular_hyperbola (const double &x, const df1b2variable &theta, const df1b2variable &alpha, const df1b2variable &pmax)
 nonrectangular hyperbolic function; random effects scalar
df1b2vector nonrectangular_hyperbola (const dvector &x, const df1b2variable &theta, const df1b2variable &alpha, const df1b2variable &pmax)
 nonrectangular hyperbolic function; random effects vectorized
df1b2vector nonrectangular_hyperbola (const dvector &x, const df1b2vector &theta, const df1b2variable &alpha, const df1b2variable &pmax)
 nonrectangular hyperbolic function; random effects vectorized
df1b2vector nonrectangular_hyperbola (const dvector &x, const df1b2variable &theta, const df1b2vector &alpha, const df1b2variable &pmax)
 nonrectangular hyperbolic function; random effects vectorized
df1b2vector nonrectangular_hyperbola (const dvector &x, const df1b2vector &theta, const df1b2vector &alpha, const df1b2variable &pmax)
 nonrectangular hyperbolic function; random effects vectorized
df1b2vector nonrectangular_hyperbola (const dvector &x, const df1b2variable &theta, const df1b2variable &alpha, const df1b2vector &pmax)
 nonrectangular hyperbolic function; random effects vectorized
df1b2vector nonrectangular_hyperbola (const dvector &x, const df1b2vector &theta, const df1b2variable &alpha, const df1b2vector &pmax)
 nonrectangular hyperbolic function; random effects vectorized
df1b2vector nonrectangular_hyperbola (const dvector &x, const df1b2variable &theta, const df1b2vector &alpha, const df1b2vector &pmax)
 nonrectangular hyperbolic function; random effects vectorized
df1b2vector nonrectangular_hyperbola (const dvector &x, const df1b2vector &theta, const df1b2vector &alpha, const df1b2vector &pmax)
 nonrectangular hyperbolic function; random effects vectorized
dvariable Ricker (const double &x, const prevariable &a, const prevariable &b)
 Ricker function; scalar.
dvar_vector Ricker (const dvector &x, const prevariable &a, const prevariable &b)
 Ricker function; vectorized.
dvar_vector Ricker (const dvector &x, const dvar_vector &a, const prevariable &b)
 Ricker function; vectorized.
dvar_vector Ricker (const dvector &x, const prevariable &a, const dvar_vector &b)
 Ricker function; vectorized.
dvar_vector Ricker (const dvector &x, const dvar_vector &a, const dvar_vector &b)
 Ricker function; vectorized.
df1b2variable Ricker (const double &x, const df1b2variable &a, const df1b2variable &b)
 Ricker function; random effects scalar.
df1b2vector Ricker (const dvector &x, const df1b2variable &a, const df1b2variable &b)
 Ricker function; random effects vectorized.
df1b2vector Ricker (const dvector &x, const df1b2vector &a, const df1b2variable &b)
 Ricker function; random effects vectorized.
df1b2vector Ricker (const dvector &x, const df1b2variable &a, const df1b2vector &b)
 Ricker function; random effects vectorized.
df1b2vector Ricker (const dvector &x, const df1b2vector &a, const df1b2vector &b)
 Ricker function; random effects vectorized.
dvariable Shepherd (const double &x, const prevariable &a, const prevariable &b, const prevariable &c)
 Shepherd function scalar.
dvar_vector Shepherd (const dvector &x, const prevariable &a, const prevariable &b, const prevariable &c)
 Shepherd function vectorized.
dvar_vector Shepherd (const dvector &x, const dvar_vector &a, const prevariable &b, const prevariable &c)
 Shepherd function vectorized.
dvar_vector Shepherd (const dvector &x, const prevariable &a, const dvar_vector &b, const prevariable &c)
 Shepherd function vectorized.
dvar_vector Shepherd (const dvector &x, const dvar_vector &a, const dvar_vector &b, const prevariable &c)
 Shepherd function vectorized.
dvar_vector Shepherd (const dvector &x, const prevariable &a, const prevariable &b, const dvar_vector &c)
 Shepherd function vectorized.
dvar_vector Shepherd (const dvector &x, const dvar_vector &a, const prevariable &b, const dvar_vector &c)
 Shepherd function vectorized.
dvar_vector Shepherd (const dvector &x, const prevariable &a, const dvar_vector &b, const dvar_vector &c)
 Shepherd function vectorized.
dvar_vector Shepherd (const dvector &x, const dvar_vector &a, const dvar_vector &b, const dvar_vector &c)
 Shepherd function vectorized.
df1b2variable Shepherd (const double &x, const df1b2variable &a, const df1b2variable &b, const df1b2variable &c)
 Shepherd function random effects scalar.
df1b2vector Shepherd (const dvector &x, const df1b2variable &a, const df1b2variable &b, const df1b2variable &c)
 Shepherd function random effects vectorized.
df1b2vector Shepherd (const dvector &x, const df1b2vector &a, const df1b2variable &b, const df1b2variable &c)
 Shepherd function random effects vectorized.
df1b2vector Shepherd (const dvector &x, const df1b2variable &a, const df1b2vector &b, const df1b2variable &c)
 Shepherd function random effects vectorized.
df1b2vector Shepherd (const dvector &x, const df1b2vector &a, const df1b2vector &b, const df1b2variable &c)
 Shepherd function random effects vectorized.
df1b2vector Shepherd (const dvector &x, const df1b2variable &a, const df1b2variable &b, const df1b2vector &c)
 Shepherd function random effects vectorized.
df1b2vector Shepherd (const dvector &x, const df1b2vector &a, const df1b2variable &b, const df1b2vector &c)
 Shepherd function random effects vectorized.
df1b2vector Shepherd (const dvector &x, const df1b2variable &a, const df1b2vector &b, const df1b2vector &c)
 Shepherd function random effects vectorized.
df1b2vector Shepherd (const dvector &x, const df1b2vector &a, const df1b2vector &b, const df1b2vector &c)
 Shepherd function random effects vectorized.
dvariable theta_logistic (const double &t, const prevariable &K, const prevariable &r, const prevariable &n0, const prevariable &theta)
 theta logistic function; scalar
dvar_vector theta_logistic (const dvector &t, const prevariable &K, const prevariable &r, const prevariable &n0, const prevariable &theta)
 theta logistic function; vectorized
dvar_vector theta_logistic (const dvector &t, const dvar_vector &K, const prevariable &r, const prevariable &n0, const prevariable &theta)
 theta logistic function; vectorized
dvar_vector theta_logistic (const dvector &t, const prevariable &K, const dvar_vector &r, const prevariable &n0, const prevariable &theta)
 theta logistic function; vectorized
dvar_vector theta_logistic (const dvector &t, const dvar_vector &K, const dvar_vector &r, const prevariable &n0, const prevariable &theta)
 theta logistic function; vectorized
dvar_vector theta_logistic (const dvector &t, const prevariable &K, const prevariable &r, const dvar_vector &n0, const prevariable &theta)
 theta logistic function; vectorized
dvar_vector theta_logistic (const dvector &t, const dvar_vector &K, const prevariable &r, const dvar_vector &n0, const prevariable &theta)
 theta logistic function; vectorized
dvar_vector theta_logistic (const dvector &t, const prevariable &K, const dvar_vector &r, const dvar_vector &n0, const prevariable &theta)
 theta logistic function; vectorized
dvar_vector theta_logistic (const dvector &t, const dvar_vector &K, const dvar_vector &r, const dvar_vector &n0, const prevariable &theta)
 theta logistic function; vectorized
df1b2variable theta_logistic (const double &t, const df1b2variable &K, const df1b2variable &r, const df1b2variable &n0, const df1b2variable &theta)
 theta logistic function; random effects scalar
df1b2vector theta_logistic (const dvector &t, const df1b2variable &K, const df1b2variable &r, const df1b2variable &n0, const df1b2variable &theta)
 theta logistic function; random effects vectorized
df1b2vector theta_logistic (const dvector &t, const df1b2vector &K, const df1b2variable &r, const df1b2variable &n0, const df1b2variable &theta)
 theta logistic function; random effects vectorized
df1b2vector theta_logistic (const dvector &t, const df1b2variable &K, const df1b2vector &r, const df1b2variable &n0, const df1b2variable &theta)
 theta logistic function; random effects vectorized
df1b2vector theta_logistic (const dvector &t, const df1b2vector &K, const df1b2vector &r, const df1b2variable &n0, const df1b2variable &theta)
 theta logistic function; random effects vectorized
df1b2vector theta_logistic (const dvector &t, const df1b2variable &K, const df1b2variable &r, const df1b2vector &n0, const df1b2variable &theta)
 theta logistic function; random effects vectorized
df1b2vector theta_logistic (const dvector &t, const df1b2vector &K, const df1b2variable &r, const df1b2vector &n0, const df1b2variable &theta)
 theta logistic function; random effects vectorized
df1b2vector theta_logistic (const dvector &t, const df1b2variable &K, const df1b2vector &r, const df1b2vector &n0, const df1b2variable &theta)
 theta logistic function; random effects vectorized
df1b2vector theta_logistic (const dvector &t, const df1b2vector &K, const df1b2vector &r, const df1b2vector &n0, const df1b2variable &theta)
 theta logistic function; random effects vectorized

Detailed Description

Contributed by Mollie Brooks.


Function Documentation

dvariable generalized_Ricker1 ( const double &  x,
const prevariable x0,
const prevariable A,
const prevariable alpha 
)

generalized Ricker function, first parameerization; scalar

Parameters:
xindependent variable; data scalar
x0; differentiable scalar
A; differentiable scalar
alpha; differentiable scalar
Returns:
$ A(\frac{x}{x0}e^{(1.0-\frac{x}{x0})})^{\alpha} $

Definition at line 15 of file generalized_Ricker1.cpp.

dvar_vector generalized_Ricker1 ( const dvector x,
const prevariable x0,
const prevariable A,
const prevariable alpha 
)

generalized Ricker function, first parameerization; vectorized

Parameters:
xindependent variable; data vector
x0; differentiable scalar
A; differentiable scalar
alpha; differentiable scalar
Returns:
$ A(\frac{x}{x0}e^{(1.0-\frac{x}{x0})})^{\alpha} $

Definition at line 32 of file generalized_Ricker1.cpp.

dvar_vector generalized_Ricker1 ( const dvector x,
const dvar_vector x0,
const prevariable A,
const prevariable alpha 
)

generalized Ricker function, first parameerization; vectorized

Parameters:
xindependent variable; data vector
x0; differentiable vector
A; differentiable scalar
alpha; differentiable scalar
Returns:
$ A(\frac{x}{x0}e^{(1.0-\frac{x}{x0})})^{\alpha} $

Definition at line 49 of file generalized_Ricker1.cpp.

dvar_vector generalized_Ricker1 ( const dvector x,
const prevariable x0,
const dvar_vector A,
const prevariable alpha 
)

generalized Ricker function, first parameerization; vectorized

Parameters:
xindependent variable; data vector
x0; differentiable scalar
A; differentiable vector
alpha; differentiable scalar
Returns:
$ A(\frac{x}{x0}e^{(1.0-\frac{x}{x0})})^{\alpha} $

Definition at line 67 of file generalized_Ricker1.cpp.

dvar_vector generalized_Ricker1 ( const dvector x,
const dvar_vector x0,
const dvar_vector A,
const prevariable alpha 
)

generalized Ricker function, first parameerization; vectorized

Parameters:
xindependent variable; data vector
x0; differentiable vector
A; differentiable vector
alpha; differentiable scalar
Returns:
$ A(\frac{x}{x0}e^{(1.0-\frac{x}{x0})})^{\alpha} $

Definition at line 84 of file generalized_Ricker1.cpp.

dvar_vector generalized_Ricker1 ( const dvector x,
const prevariable x0,
const prevariable A,
const dvar_vector alpha 
)

generalized Ricker function, first parameerization; vectorized

Parameters:
xindependent variable; data vector
x0; differentiable scalar
A; differentiable scalar
alpha; differentiable vector
Returns:
$ A(\frac{x}{x0}e^{(1.0-\frac{x}{x0})})^{\alpha} $

Definition at line 103 of file generalized_Ricker1.cpp.

dvar_vector generalized_Ricker1 ( const dvector x,
const dvar_vector x0,
const prevariable A,
const dvar_vector alpha 
)

generalized Ricker function, first parameerization; vectorized

Parameters:
xindependent variable; data vector
x0; differentiable vector
A; differentiable scalar
alpha; differentiable vector
Returns:
$ A(\frac{x}{x0}e^{(1.0-\frac{x}{x0})})^{\alpha} $

Definition at line 120 of file generalized_Ricker1.cpp.

dvar_vector generalized_Ricker1 ( const dvector x,
const prevariable x0,
const dvar_vector A,
const dvar_vector alpha 
)

generalized Ricker function, first parameerization; vectorized

Parameters:
xindependent variable; data vector
x0; differentiable scalar
A; differentiable vector
alpha; differentiable vector
Returns:
$ A(\frac{x}{x0}e^{(1.0-\frac{x}{x0})})^{\alpha} $

Definition at line 138 of file generalized_Ricker1.cpp.

dvar_vector generalized_Ricker1 ( const dvector x,
const dvar_vector x0,
const dvar_vector A,
const dvar_vector alpha 
)

generalized Ricker function, first parameerization; vectorized

Parameters:
xindependent variable; data vector
x0; differentiable vector
A; differentiable vector
alpha; differentiable vector
Returns:
$ A(\frac{x}{x0}e^{(1.0-\frac{x}{x0})})^{\alpha} $

Definition at line 155 of file generalized_Ricker1.cpp.

df1b2variable generalized_Ricker1 ( const double &  x,
const df1b2variable x0,
const df1b2variable A,
const df1b2variable alpha 
)

generalized Ricker function, first parameerization; random effects scalar

Parameters:
xindependent variable; data scalar
x0; differentiable scalar in a random effects model
A; differentiable scalar in a random effects model
alpha; differentiable scalar in a random effects model
Returns:
$ A(\frac{x}{x0}e^{(1.0-\frac{x}{x0})})^{\alpha} $

Definition at line 175 of file generalized_Ricker1.cpp.

df1b2vector generalized_Ricker1 ( const dvector x,
const df1b2variable x0,
const df1b2variable A,
const df1b2variable alpha 
)

generalized Ricker function, first parameerization; random effects vectorized

Parameters:
xindependent variable; data vector
x0; differentiable scalar in a random effects model
A; differentiable scalar in a random effects model
alpha; differentiable scalar in a random effects model
Returns:
$ A(\frac{x}{x0}e^{(1.0-\frac{x}{x0})})^{\alpha} $

Definition at line 190 of file generalized_Ricker1.cpp.

df1b2vector generalized_Ricker1 ( const dvector x,
const df1b2vector x0,
const df1b2variable A,
const df1b2variable alpha 
)

generalized Ricker function, first parameerization; random effects vectorized

Parameters:
xindependent variable; data vector
x0; differentiable vector in a random effects model
A; differentiable scalar in a random effects model
alpha; differentiable scalar in a random effects model
Returns:
$ A(\frac{x}{x0}e^{(1.0-\frac{x}{x0})})^{\alpha} $

Definition at line 205 of file generalized_Ricker1.cpp.

df1b2vector generalized_Ricker1 ( const dvector x,
const df1b2variable x0,
const df1b2vector A,
const df1b2variable alpha 
)

generalized Ricker function, first parameerization; random effects vectorized

Parameters:
xindependent variable; data vector
x0; differentiable scalar in a random effects model
A; differentiable vector in a random effects model
alpha; differentiable scalar in a random effects model
Returns:
$ A(\frac{x}{x0}e^{(1.0-\frac{x}{x0})})^{\alpha} $

Definition at line 223 of file generalized_Ricker1.cpp.

df1b2vector generalized_Ricker1 ( const dvector x,
const df1b2vector x0,
const df1b2vector A,
const df1b2variable alpha 
)

generalized Ricker function, first parameerization; random effects vectorized

Parameters:
xindependent variable; data vector
x0; differentiable vector in a random effects model
A; differentiable vector in a random effects model
alpha; differentiable scalar in a random effects model
Returns:
$ A(\frac{x}{x0}e^{(1.0-\frac{x}{x0})})^{\alpha} $

Definition at line 238 of file generalized_Ricker1.cpp.

df1b2vector generalized_Ricker1 ( const dvector x,
const df1b2variable x0,
const df1b2variable A,
const df1b2vector alpha 
)

generalized Ricker function, first parameerization; random effects vectorized

Parameters:
xindependent variable; data vector
x0; differentiable scalar in a random effects model
A; differentiable scalar in a random effects model
alpha; differentiable vector in a random effects model
Returns:
$ A(\frac{x}{x0}e^{(1.0-\frac{x}{x0})})^{\alpha} $

Definition at line 258 of file generalized_Ricker1.cpp.

df1b2vector generalized_Ricker1 ( const dvector x,
const df1b2vector x0,
const df1b2variable A,
const df1b2vector alpha 
)

generalized Ricker function, first parameerization; random effects vectorized

Parameters:
xindependent variable; data vector
x0; differentiable vector in a random effects model
A; differentiable scalar in a random effects model
alpha; differentiable vector in a random effects model
Returns:
$ A(\frac{x}{x0}e^{(1.0-\frac{x}{x0})})^{\alpha} $

Definition at line 273 of file generalized_Ricker1.cpp.

df1b2vector generalized_Ricker1 ( const dvector x,
const df1b2variable x0,
const df1b2vector A,
const df1b2vector alpha 
)

generalized Ricker function, first parameerization; random effects vectorized

Parameters:
xindependent variable; data vector
x0; differentiable scalar in a random effects model
A; differentiable vector in a random effects model
alpha; differentiable vector in a random effects model
Returns:
$ A(\frac{x}{x0}e^{(1.0-\frac{x}{x0})})^{\alpha} $

Definition at line 291 of file generalized_Ricker1.cpp.

df1b2vector generalized_Ricker1 ( const dvector x,
const df1b2vector x0,
const df1b2vector A,
const df1b2vector alpha 
)

generalized Ricker function, first parameerization; random effects vectorized

Parameters:
xindependent variable; data vector
x0; differentiable vector in a random effects model
A; differentiable vector in a random effects model
alpha; differentiable vector in a random effects model
Returns:
$ A(\frac{x}{x0}e^{(1.0-\frac{x}{x0})})^{\alpha} $

Definition at line 306 of file generalized_Ricker1.cpp.

dvariable generalized_Ricker2 ( const double &  x,
const prevariable r,
const prevariable a,
const prevariable alpha 
)

generalized Ricker function, second parameerization; scalar

Parameters:
xindependent variable; data scalar
r; differentiable scalar
a; differentiable scalar
alpha; differentiable scalar
Returns:
$ xe^{r(1-(\frac{a}{x})^\alpha)} $

Definition at line 15 of file generalized_Ricker2.cpp.

dvar_vector generalized_Ricker2 ( const dvector x,
const prevariable r,
const prevariable a,
const prevariable alpha 
)

generalized Ricker function, second parameerization; vectorized

Parameters:
xindependent variable; data vector
r; differentiable scalar
a; differentiable scalar
alpha; differentiable scalar
Returns:
$ xe^{r(1-(\frac{a}{x})^\alpha)} $

Definition at line 32 of file generalized_Ricker2.cpp.

dvar_vector generalized_Ricker2 ( const dvector x,
const dvar_vector r,
const prevariable a,
const prevariable alpha 
)

generalized Ricker function, second parameerization; vectorized

Parameters:
xindependent variable; data vector
r; differentiable vector
a; differentiable scalar
alpha; differentiable scalar
Returns:
$ xe^{r(1-(\frac{a}{x})^\alpha)} $

Definition at line 49 of file generalized_Ricker2.cpp.

dvar_vector generalized_Ricker2 ( const dvector x,
const prevariable r,
const dvar_vector a,
const prevariable alpha 
)

generalized Ricker function, second parameerization; vectorized

Parameters:
xindependent variable; data vector
r; differentiable scalar
a; differentiable vector
alpha; differentiable scalar
Returns:
$ xe^{r(1-(\frac{a}{x})^\alpha)} $

Definition at line 67 of file generalized_Ricker2.cpp.

dvar_vector generalized_Ricker2 ( const dvector x,
const dvar_vector r,
const dvar_vector a,
const prevariable alpha 
)

generalized Ricker function, second parameerization; vectorized

Parameters:
xindependent variable; data vector
r; differentiable vector
a; differentiable vector
alpha; differentiable scalar
Returns:
$ xe^{r(1-(\frac{a}{x})^\alpha)} $

Definition at line 84 of file generalized_Ricker2.cpp.

dvar_vector generalized_Ricker2 ( const dvector x,
const prevariable r,
const prevariable a,
const dvar_vector alpha 
)

generalized Ricker function, second parameerization; vectorized

Parameters:
xindependent variable; data vector
r; differentiable scalar
a; differentiable scalar
alpha; differentiable vector
Returns:
$ xe^{r(1-(\frac{a}{x})^\alpha)} $

Definition at line 103 of file generalized_Ricker2.cpp.

dvar_vector generalized_Ricker2 ( const dvector x,
const dvar_vector r,
const prevariable a,
const dvar_vector alpha 
)

generalized Ricker function, second parameerization; vectorized

Parameters:
xindependent variable; data vector
r; differentiable vector
a; differentiable scalar
alpha; differentiable vector
Returns:
$ xe^{r(1-(\frac{a}{x})^\alpha)} $

Definition at line 120 of file generalized_Ricker2.cpp.

dvar_vector generalized_Ricker2 ( const dvector x,
const prevariable r,
const dvar_vector a,
const dvar_vector alpha 
)

generalized Ricker function, second parameerization; vectorized

Parameters:
xindependent variable; data vector
r; differentiable scalar
a; differentiable vector
alpha; differentiable vector
Returns:
$ xe^{r(1-(\frac{a}{x})^\alpha)} $

Definition at line 138 of file generalized_Ricker2.cpp.

dvar_vector generalized_Ricker2 ( const dvector x,
const dvar_vector r,
const dvar_vector a,
const dvar_vector alpha 
)

generalized Ricker function, second parameerization; vectorized

Parameters:
xindependent variable; data vector
r; differentiable vector
a; differentiable vector
alpha; differentiable vector
Returns:
$ xe^{r(1-(\frac{a}{x})^\alpha)} $

Definition at line 155 of file generalized_Ricker2.cpp.

df1b2variable generalized_Ricker2 ( const double &  x,
const df1b2variable r,
const df1b2variable a,
const df1b2variable alpha 
)

generalized Ricker function, second parameerization; random effects scalar

Parameters:
xindependent variable; data scalar
r; differentiable scalar in a random effects model
a; differentiable scalar in a random effects model
alpha; differentiable scalar in a random effects model
Returns:
$ xe^{r(1-(\frac{a}{x})^\alpha)} $

Definition at line 175 of file generalized_Ricker2.cpp.

df1b2vector generalized_Ricker2 ( const dvector x,
const df1b2variable r,
const df1b2variable a,
const df1b2variable alpha 
)

generalized Ricker function, second parameerization; random effects vectorized

Parameters:
xindependent variable; data vector
r; differentiable scalar in a random effects model
a; differentiable scalar in a random effects model
alpha; differentiable scalar in a random effects model
Returns:
$ xe^{r(1-(\frac{a}{x})^\alpha)} $

Definition at line 190 of file generalized_Ricker2.cpp.

df1b2vector generalized_Ricker2 ( const dvector x,
const df1b2vector r,
const df1b2variable a,
const df1b2variable alpha 
)

generalized Ricker function, second parameerization; random effects vectorized

Parameters:
xindependent variable; data vector
r; differentiable vector in a random effects model
a; differentiable scalar in a random effects model
alpha; differentiable scalar in a random effects model
Returns:
$ xe^{r(1-(\frac{a}{x})^\alpha)} $

Definition at line 205 of file generalized_Ricker2.cpp.

df1b2vector generalized_Ricker2 ( const dvector x,
const df1b2variable r,
const df1b2vector a,
const df1b2variable alpha 
)

generalized Ricker function, second parameerization; random effects vectorized

Parameters:
xindependent variable; data vector
r; differentiable scalar in a random effects model
a; differentiable vector in a random effects model
alpha; differentiable scalar in a random effects model
Returns:
$ xe^{r(1-(\frac{a}{x})^\alpha)} $

Definition at line 223 of file generalized_Ricker2.cpp.

df1b2vector generalized_Ricker2 ( const dvector x,
const df1b2vector r,
const df1b2vector a,
const df1b2variable alpha 
)

generalized Ricker function, second parameerization; random effects vectorized

Parameters:
xindependent variable; data vector
r; differentiable vector in a random effects model
a; differentiable vector in a random effects model
alpha; differentiable scalar in a random effects model
Returns:
$ xe^{r(1-(\frac{a}{x})^\alpha)} $

Definition at line 238 of file generalized_Ricker2.cpp.

df1b2vector generalized_Ricker2 ( const dvector x,
const df1b2variable r,
const df1b2variable a,
const df1b2vector alpha 
)

generalized Ricker function, second parameerization; random effects vectorized

Parameters:
xindependent variable; data vector
r; differentiable scalar in a random effects model
a; differentiable scalar in a random effects model
alpha; differentiable vector in a random effects model
Returns:
$ xe^{r(1-(\frac{a}{x})^\alpha)} $

Definition at line 258 of file generalized_Ricker2.cpp.

df1b2vector generalized_Ricker2 ( const dvector x,
const df1b2vector r,
const df1b2variable a,
const df1b2vector alpha 
)

generalized Ricker function, second parameerization; random effects vectorized

Parameters:
xindependent variable; data vector
r; differentiable vector in a random effects model
a; differentiable scalar in a random effects model
alpha; differentiable vector in a random effects model
Returns:
$ xe^{r(1-(\frac{a}{x})^\alpha)} $

Definition at line 273 of file generalized_Ricker2.cpp.

df1b2vector generalized_Ricker2 ( const dvector x,
const df1b2variable r,
const df1b2vector a,
const df1b2vector alpha 
)

generalized Ricker function, second parameerization; random effects vectorized

Parameters:
xindependent variable; data vector
r; differentiable scalar in a random effects model
a; differentiable vector in a random effects model
alpha; differentiable vector in a random effects model
Returns:
$ xe^{r(1-(\frac{a}{x})^\alpha)} $

Definition at line 291 of file generalized_Ricker2.cpp.

df1b2vector generalized_Ricker2 ( const dvector x,
const df1b2vector r,
const df1b2vector a,
const df1b2vector alpha 
)

generalized Ricker function, second parameerization; random effects vectorized

Parameters:
xindependent variable; data vector
r; differentiable vector in a random effects model
a; differentiable vector in a random effects model
alpha; differentiable vector in a random effects model
Returns:
$ xe^{r(1-(\frac{a}{x})^\alpha)} $

Definition at line 306 of file generalized_Ricker2.cpp.

dvariable Gompertz ( const double &  x,
const prevariable a,
const prevariable b 
)

Gompertz function; scalar.

Parameters:
xindependent variable; data scalar
a; differentiable scalar
b; differentiable scalar
Returns:
$ e^{-ae^{-bx}} $

Definition at line 14 of file Gompertz.cpp.

dvar_vector Gompertz ( const dvector x,
const prevariable a,
const prevariable b 
)

Gompertz function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable scalar
Returns:
$ e^{-ae^{-bx}} $

Definition at line 30 of file Gompertz.cpp.

dvar_vector Gompertz ( const dvector x,
const dvar_vector a,
const prevariable b 
)

Gompertz function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable scalar
Returns:
$ e^{-ae^{-bx}} $

Definition at line 46 of file Gompertz.cpp.

dvar_vector Gompertz ( const dvector x,
const prevariable a,
const dvar_vector b 
)

Gompertz function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable vector
Returns:
$ e^{-ae^{-bx}} $

Definition at line 63 of file Gompertz.cpp.

dvar_vector Gompertz ( const dvector x,
const dvar_vector a,
const dvar_vector b 
)

Gompertz function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable vector
Returns:
$ e^{-ae^{-bx}} $

Definition at line 79 of file Gompertz.cpp.

df1b2variable Gompertz ( const double &  x,
const df1b2variable a,
const df1b2variable b 
)

Gompertz function; random effects scalar.

Parameters:
xindependent variable; data scalar
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
Returns:
$ e^{-ae^{-bx}} $

Definition at line 97 of file Gompertz.cpp.

df1b2vector Gompertz ( const dvector x,
const df1b2variable a,
const df1b2variable b 
)

Gompertz function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
Returns:
$ e^{-ae^{-bx}} $

Definition at line 111 of file Gompertz.cpp.

df1b2vector Gompertz ( const dvector x,
const df1b2vector a,
const df1b2variable b 
)

Gompertz function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable scalar in a random effects model
Returns:
$ e^{-ae^{-bx}} $

Definition at line 125 of file Gompertz.cpp.

df1b2vector Gompertz ( const dvector x,
const df1b2variable a,
const df1b2vector b 
)

Gompertz function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable vector in a random effects model
Returns:
$ e^{-ae^{-bx}} $

Definition at line 142 of file Gompertz.cpp.

df1b2vector Gompertz ( const dvector x,
const df1b2vector a,
const df1b2vector b 
)

Gompertz function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable vector in a random effects model
Returns:
$ e^{-ae^{-bx}} $

Definition at line 156 of file Gompertz.cpp.

dvariable Hassell ( const double &  x,
const prevariable a,
const prevariable b,
const prevariable c 
)

Hassell function scalar.

Parameters:
xindependent variable; data scalar
a; differentiable scalar
b; differentiable scalar
c; differentiable scalar
Returns:
$ \frac{ax}{(b+x)^c} $

Definition at line 15 of file Hassell.cpp.

dvar_vector Hassell ( const dvector x,
const prevariable a,
const prevariable b,
const prevariable c 
)

Hassell function vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable scalar
c; differentiable scalar
Returns:
$ \frac{ax}{(b+x)^c} $

Definition at line 32 of file Hassell.cpp.

dvar_vector Hassell ( const dvector x,
const dvar_vector a,
const prevariable b,
const prevariable c 
)

Hassell function vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable scalar
c; differentiable scalar
Returns:
$ \frac{ax}{(b+x)^c} $

Definition at line 49 of file Hassell.cpp.

dvar_vector Hassell ( const dvector x,
const prevariable a,
const dvar_vector b,
const prevariable c 
)

Hassell function vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable vector
c; differentiable scalar
Returns:
$ \frac{ax}{(b+x)^c} $

Definition at line 67 of file Hassell.cpp.

dvar_vector Hassell ( const dvector x,
const dvar_vector a,
const dvar_vector b,
const prevariable c 
)

Hassell function vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable vector
c; differentiable scalar
Returns:
$ \frac{ax}{(b+x)^c} $

Definition at line 84 of file Hassell.cpp.

dvar_vector Hassell ( const dvector x,
const prevariable a,
const prevariable b,
const dvar_vector c 
)

Hassell function vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable scalar
c; differentiable vector
Returns:
$ \frac{ax}{(b+x)^c} $

Definition at line 103 of file Hassell.cpp.

dvar_vector Hassell ( const dvector x,
const dvar_vector a,
const prevariable b,
const dvar_vector c 
)

Hassell function vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable scalar
c; differentiable vector
Returns:
$ \frac{ax}{(b+x)^c} $

Definition at line 120 of file Hassell.cpp.

dvar_vector Hassell ( const dvector x,
const prevariable a,
const dvar_vector b,
const dvar_vector c 
)

Hassell function vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable vector
c; differentiable vector
Returns:
$ \frac{ax}{(b+x)^c} $

Definition at line 138 of file Hassell.cpp.

dvar_vector Hassell ( const dvector x,
const dvar_vector a,
const dvar_vector b,
const dvar_vector c 
)

Hassell function vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable vector
c; differentiable vector
Returns:
$ \frac{ax}{(b+x)^c} $

Definition at line 155 of file Hassell.cpp.

df1b2variable Hassell ( const double &  x,
const df1b2variable a,
const df1b2variable b,
const df1b2variable c 
)

Hassell function random effects scalar.

Parameters:
xindependent variable; data scalar
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
c; differentiable scalar in a random effects model
Returns:
$ \frac{ax}{(b+x)^c} $

Definition at line 175 of file Hassell.cpp.

df1b2vector Hassell ( const dvector x,
const df1b2variable a,
const df1b2variable b,
const df1b2variable c 
)

Hassell function random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
c; differentiable scalar in a random effects model
Returns:
$ \frac{ax}{(b+x)^c} $

Definition at line 190 of file Hassell.cpp.

df1b2vector Hassell ( const dvector x,
const df1b2vector a,
const df1b2variable b,
const df1b2variable c 
)

Hassell function random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable scalar in a random effects model
c; differentiable scalar in a random effects model
Returns:
$ \frac{ax}{(b+x)^c} $

Definition at line 205 of file Hassell.cpp.

df1b2vector Hassell ( const dvector x,
const df1b2variable a,
const df1b2vector b,
const df1b2variable c 
)

Hassell function random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable vector in a random effects model
c; differentiable scalar in a random effects model
Returns:
$ \frac{ax}{(b+x)^c} $

Definition at line 223 of file Hassell.cpp.

df1b2vector Hassell ( const dvector x,
const df1b2vector a,
const df1b2vector b,
const df1b2variable c 
)

Hassell function random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable vector in a random effects model
c; differentiable scalar in a random effects model
Returns:
$ \frac{ax}{(b+x)^c} $

Definition at line 238 of file Hassell.cpp.

df1b2vector Hassell ( const dvector x,
const df1b2variable a,
const df1b2variable b,
const df1b2vector c 
)

Hassell function random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
c; differentiable vector in a random effects model
Returns:
$ \frac{ax}{(b+x)^c} $

Definition at line 258 of file Hassell.cpp.

df1b2vector Hassell ( const dvector x,
const df1b2vector a,
const df1b2variable b,
const df1b2vector c 
)

Hassell function random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable scalar in a random effects model
c; differentiable vector in a random effects model
Returns:
$ \frac{ax}{(b+x)^c} $

Definition at line 273 of file Hassell.cpp.

df1b2vector Hassell ( const dvector x,
const df1b2variable a,
const df1b2vector b,
const df1b2vector c 
)

Hassell function random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable vector in a random effects model
c; differentiable vector in a random effects model
Returns:
$ \frac{ax}{(b+x)^c} $

Definition at line 291 of file Hassell.cpp.

df1b2vector Hassell ( const dvector x,
const df1b2vector a,
const df1b2vector b,
const df1b2vector c 
)

Hassell function random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable vector in a random effects model
c; differentiable vector in a random effects model
Returns:
$ \frac{ax}{(b+x)^c} $

Definition at line 306 of file Hassell.cpp.

dvariable Hill ( const double &  x,
const prevariable a,
const prevariable b,
const prevariable c 
)

Hill function; scalar.

Parameters:
xindependent variable; data scalar
a; differentiable scalar
b; differentiable scalar
c; differentiable scalar
Returns:
$ \frac{ax^c}{1+bx^c} $

Definition at line 15 of file Hill.cpp.

dvar_vector Hill ( const dvector x,
const prevariable a,
const prevariable b,
const prevariable c 
)

Hill function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable scalar
c; differentiable scalar
Returns:
$ \frac{ax^c}{1+bx^c} $

Definition at line 32 of file Hill.cpp.

dvar_vector Hill ( const dvector x,
const dvar_vector a,
const prevariable b,
const prevariable c 
)

Hill function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable scalar
c; differentiable scalar
Returns:
$ \frac{ax^c}{1+bx^c} $

Definition at line 49 of file Hill.cpp.

dvar_vector Hill ( const dvector x,
const prevariable a,
const dvar_vector b,
const prevariable c 
)

Hill function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable vector
c; differentiable scalar
Returns:
$ \frac{ax^c}{1+bx^c} $

Definition at line 67 of file Hill.cpp.

dvar_vector Hill ( const dvector x,
const dvar_vector a,
const dvar_vector b,
const prevariable c 
)

Hill function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable vector
c; differentiable scalar
Returns:
$ \frac{ax^c}{1+bx^c} $

Definition at line 84 of file Hill.cpp.

dvar_vector Hill ( const dvector x,
const prevariable a,
const prevariable b,
const dvar_vector c 
)

Hill function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable scalar
c; differentiable vector
Returns:
$ \frac{ax^c}{1+bx^c} $

Definition at line 103 of file Hill.cpp.

dvar_vector Hill ( const dvector x,
const dvar_vector a,
const prevariable b,
const dvar_vector c 
)

Hill function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable scalar
c; differentiable vector
Returns:
$ \frac{ax^c}{1+bx^c} $

Definition at line 120 of file Hill.cpp.

dvar_vector Hill ( const dvector x,
const prevariable a,
const dvar_vector b,
const dvar_vector c 
)

Hill function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable vector
c; differentiable vector
Returns:
$ \frac{ax^c}{1+bx^c} $

Definition at line 138 of file Hill.cpp.

dvar_vector Hill ( const dvector x,
const dvar_vector a,
const dvar_vector b,
const dvar_vector c 
)

Hill function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable vector
c; differentiable vector
Returns:
$ \frac{ax^c}{1+bx^c} $

Definition at line 155 of file Hill.cpp.

df1b2variable Hill ( const double &  x,
const df1b2variable a,
const df1b2variable b,
const df1b2variable c 
)

Hill function; random effects scalar.

Parameters:
xindependent variable; data scalar
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
c; differentiable scalar in a random effects model
Returns:
$ \frac{ax^c}{1+bx^c} $

Definition at line 175 of file Hill.cpp.

df1b2vector Hill ( const dvector x,
const df1b2variable a,
const df1b2variable b,
const df1b2variable c 
)

Hill function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
c; differentiable scalar in a random effects model
Returns:
$ \frac{ax^c}{1+bx^c} $

Definition at line 190 of file Hill.cpp.

df1b2vector Hill ( const dvector x,
const df1b2vector a,
const df1b2variable b,
const df1b2variable c 
)

Hill function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable scalar in a random effects model
c; differentiable scalar in a random effects model
Returns:
$ \frac{ax^c}{1+bx^c} $

Definition at line 205 of file Hill.cpp.

df1b2vector Hill ( const dvector x,
const df1b2variable a,
const df1b2vector b,
const df1b2variable c 
)

Hill function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable vector in a random effects model
c; differentiable scalar in a random effects model
Returns:
$ \frac{ax^c}{1+bx^c} $

Definition at line 223 of file Hill.cpp.

df1b2vector Hill ( const dvector x,
const df1b2vector a,
const df1b2vector b,
const df1b2variable c 
)

Hill function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable vector in a random effects model
c; differentiable scalar in a random effects model
Returns:
$ \frac{ax^c}{1+bx^c} $

Definition at line 238 of file Hill.cpp.

df1b2vector Hill ( const dvector x,
const df1b2variable a,
const df1b2variable b,
const df1b2vector c 
)

Hill function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
c; differentiable vector in a random effects model
Returns:
$ \frac{ax^c}{1+bx^c} $

Definition at line 258 of file Hill.cpp.

df1b2vector Hill ( const dvector x,
const df1b2vector a,
const df1b2variable b,
const df1b2vector c 
)

Hill function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable scalar in a random effects model
c; differentiable vector in a random effects model
Returns:
$ \frac{ax^c}{1+bx^c} $

Definition at line 273 of file Hill.cpp.

df1b2vector Hill ( const dvector x,
const df1b2variable a,
const df1b2vector b,
const df1b2vector c 
)

Hill function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable vector in a random effects model
c; differentiable vector in a random effects model
Returns:
$ \frac{ax^c}{1+bx^c} $

Definition at line 291 of file Hill.cpp.

df1b2vector Hill ( const dvector x,
const df1b2vector a,
const df1b2vector b,
const df1b2vector c 
)

Hill function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable vector in a random effects model
c; differentiable vector in a random effects model
Returns:
$ \frac{ax^c}{1+bx^c} $

Definition at line 306 of file Hill.cpp.

dvariable HollingII ( const double &  x,
const prevariable alpha,
const prevariable h 
)

HollingII scalar.

Parameters:
xindependent variable; data scalar
alpha; differentiable scalar
h; differentiable scalar
Returns:
$ \frac{alpha x}{1+ alpha hx} $

Definition at line 14 of file HollingII.cpp.

dvar_vector HollingII ( const dvector x,
const prevariable alpha,
const prevariable h 
)

HollingII vectorized.

Parameters:
xindependent variable; data vector
alpha; differentiable scalar
h; differentiable scalar
Returns:
$ \frac{alpha x}{1+ alpha hx} $

Definition at line 30 of file HollingII.cpp.

dvar_vector HollingII ( const dvector x,
const dvar_vector alpha,
const prevariable h 
)

HollingII vectorized.

Parameters:
xindependent variable; data vector
alpha; differentiable vector
h; differentiable scalar
Returns:
$ \frac{alpha x}{1+ alpha hx} $

Definition at line 46 of file HollingII.cpp.

dvar_vector HollingII ( const dvector x,
const prevariable alpha,
const dvar_vector h 
)

HollingII vectorized.

Parameters:
xindependent variable; data vector
alpha; differentiable scalar
h; differentiable vector
Returns:
$ \frac{alpha x}{1+ alpha hx} $

Definition at line 63 of file HollingII.cpp.

dvar_vector HollingII ( const dvector x,
const dvar_vector alpha,
const dvar_vector h 
)

HollingII vectorized.

Parameters:
xindependent variable; data vector
alpha; differentiable vector
h; differentiable vector
Returns:
$ \frac{alpha x}{1+ alpha hx} $

Definition at line 79 of file HollingII.cpp.

df1b2variable HollingII ( const double &  x,
const df1b2variable alpha,
const df1b2variable h 
)

HollingII random effects scalar.

Parameters:
xindependent variable; data scalar
alpha; differentiable scalar in a random effects model
h; differentiable scalar in a random effects model
Returns:
$ \frac{alpha x}{1+ alpha hx} $

Definition at line 97 of file HollingII.cpp.

df1b2vector HollingII ( const dvector x,
const df1b2variable alpha,
const df1b2variable h 
)

HollingII random effects vectorized.

Parameters:
xindependent variable; data vector
alpha; differentiable scalar in a random effects model
h; differentiable scalar in a random effects model
Returns:
$ \frac{alpha x}{1+ alpha hx} $

Definition at line 111 of file HollingII.cpp.

df1b2vector HollingII ( const dvector x,
const df1b2vector alpha,
const df1b2variable h 
)

HollingII random effects vectorized.

Parameters:
xindependent variable; data vector
alpha; differentiable vector in a random effects model
h; differentiable scalar in a random effects model
Returns:
$ \frac{alpha x}{1+ alpha hx} $

Definition at line 125 of file HollingII.cpp.

df1b2vector HollingII ( const dvector x,
const df1b2variable alpha,
const df1b2vector h 
)

HollingII random effects vectorized.

Parameters:
xindependent variable; data vector
alpha; differentiable scalar in a random effects model
h; differentiable vector in a random effects model
Returns:
$ \frac{alpha x}{1+ alpha hx} $

Definition at line 142 of file HollingII.cpp.

df1b2vector HollingII ( const dvector x,
const df1b2vector alpha,
const df1b2vector h 
)

HollingII random effects vectorized.

Parameters:
xindependent variable; data vector
alpha; differentiable vector in a random effects model
h; differentiable vector in a random effects model
Returns:
$ \frac{alpha x}{1+ alpha hx} $

Definition at line 156 of file HollingII.cpp.

dvariable HollingIII ( const double &  x,
const prevariable a,
const prevariable b 
)

Holling Type III function; scalar.

Parameters:
xindependent variable; data scalar
a; differentiable scalar
b; differentiable scalar
Returns:
$ \frac{ax^2}{b^2 + x^2} $

Definition at line 14 of file HollingIII.cpp.

dvar_vector HollingIII ( const dvector x,
const prevariable a,
const prevariable b 
)

Holling Type III function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable scalar
Returns:
$ \frac{ax^2}{b^2 + x^2} $

Definition at line 30 of file HollingIII.cpp.

dvar_vector HollingIII ( const dvector x,
const dvar_vector a,
const prevariable b 
)

Holling Type III function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable scalar
Returns:
$ \frac{ax^2}{b^2 + x^2} $

Definition at line 46 of file HollingIII.cpp.

dvar_vector HollingIII ( const dvector x,
const prevariable a,
const dvar_vector b 
)

Holling Type III function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable vector
Returns:
$ \frac{ax^2}{b^2 + x^2} $

Definition at line 63 of file HollingIII.cpp.

dvar_vector HollingIII ( const dvector x,
const dvar_vector a,
const dvar_vector b 
)

Holling Type III function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable vector
Returns:
$ \frac{ax^2}{b^2 + x^2} $

Definition at line 79 of file HollingIII.cpp.

df1b2variable HollingIII ( const double &  x,
const df1b2variable a,
const df1b2variable b 
)

Holling Type III function; random effects scalar.

Parameters:
xindependent variable; data scalar
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
Returns:
$ \frac{ax^2}{b^2 + x^2} $

Definition at line 97 of file HollingIII.cpp.

df1b2vector HollingIII ( const dvector x,
const df1b2variable a,
const df1b2variable b 
)

Holling Type III function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
Returns:
$ \frac{ax^2}{b^2 + x^2} $

Definition at line 111 of file HollingIII.cpp.

df1b2vector HollingIII ( const dvector x,
const df1b2vector a,
const df1b2variable b 
)

Holling Type III function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable scalar in a random effects model
Returns:
$ \frac{ax^2}{b^2 + x^2} $

Definition at line 125 of file HollingIII.cpp.

df1b2vector HollingIII ( const dvector x,
const df1b2variable a,
const df1b2vector b 
)

Holling Type III function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable vector in a random effects model
Returns:
$ \frac{ax^2}{b^2 + x^2} $

Definition at line 142 of file HollingIII.cpp.

df1b2vector HollingIII ( const dvector x,
const df1b2vector a,
const df1b2vector b 
)

Holling Type III function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable vector in a random effects model
Returns:
$ \frac{ax^2}{b^2 + x^2} $

Definition at line 156 of file HollingIII.cpp.

dvariable HollingIV ( const double &  x,
const prevariable a,
const prevariable b,
const prevariable c 
)

Holling Type IV function; scalar.

Parameters:
xindependent variable; data scalar
a; differentiable scalar
b; differentiable scalar
c; differentiable scalar
Returns:
$ \frac{ax^2}{b + cx + x^2} $

Definition at line 15 of file HollingIV.cpp.

dvar_vector HollingIV ( const dvector x,
const prevariable a,
const prevariable b,
const prevariable c 
)

Holling Type IV function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable scalar
c; differentiable scalar
Returns:
$ \frac{ax^2}{b + cx + x^2} $

Definition at line 32 of file HollingIV.cpp.

dvar_vector HollingIV ( const dvector x,
const dvar_vector a,
const prevariable b,
const prevariable c 
)

Holling Type IV function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable scalar
c; differentiable scalar
Returns:
$ \frac{ax^2}{b + cx + x^2} $

Definition at line 49 of file HollingIV.cpp.

dvar_vector HollingIV ( const dvector x,
const prevariable a,
const dvar_vector b,
const prevariable c 
)

Holling Type IV function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable vector
c; differentiable scalar
Returns:
$ \frac{ax^2}{b + cx + x^2} $

Definition at line 67 of file HollingIV.cpp.

dvar_vector HollingIV ( const dvector x,
const dvar_vector a,
const dvar_vector b,
const prevariable c 
)

Holling Type IV function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable vector
c; differentiable scalar
Returns:
$ \frac{ax^2}{b + cx + x^2} $

Definition at line 84 of file HollingIV.cpp.

dvar_vector HollingIV ( const dvector x,
const prevariable a,
const prevariable b,
const dvar_vector c 
)

Holling Type IV function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable scalar
c; differentiable vector
Returns:
$ \frac{ax^2}{b + cx + x^2} $

Definition at line 103 of file HollingIV.cpp.

dvar_vector HollingIV ( const dvector x,
const dvar_vector a,
const prevariable b,
const dvar_vector c 
)

Holling Type IV function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable scalar
c; differentiable vector
Returns:
$ \frac{ax^2}{b + cx + x^2} $

Definition at line 120 of file HollingIV.cpp.

dvar_vector HollingIV ( const dvector x,
const prevariable a,
const dvar_vector b,
const dvar_vector c 
)

Holling Type IV function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable vector
c; differentiable vector
Returns:
$ \frac{ax^2}{b + cx + x^2} $

Definition at line 138 of file HollingIV.cpp.

dvar_vector HollingIV ( const dvector x,
const dvar_vector a,
const dvar_vector b,
const dvar_vector c 
)

Holling Type IV function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable vector
c; differentiable vector
Returns:
$ \frac{ax^2}{b + cx + x^2} $

Definition at line 155 of file HollingIV.cpp.

df1b2variable HollingIV ( const double &  x,
const df1b2variable a,
const df1b2variable b,
const df1b2variable c 
)

Holling Type IV function; random effects scalar.

Parameters:
xindependent variable; data scalar
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
c; differentiable scalar in a random effects model
Returns:
$ \frac{ax^2}{b + cx + x^2} $

Definition at line 175 of file HollingIV.cpp.

df1b2vector HollingIV ( const dvector x,
const df1b2variable a,
const df1b2variable b,
const df1b2variable c 
)

Holling Type IV function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
c; differentiable scalar in a random effects model
Returns:
$ \frac{ax^2}{b + cx + x^2} $

Definition at line 190 of file HollingIV.cpp.

df1b2vector HollingIV ( const dvector x,
const df1b2vector a,
const df1b2variable b,
const df1b2variable c 
)

Holling Type IV function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable scalar in a random effects model
c; differentiable scalar in a random effects model
Returns:
$ \frac{ax^2}{b + cx + x^2} $

Definition at line 205 of file HollingIV.cpp.

df1b2vector HollingIV ( const dvector x,
const df1b2variable a,
const df1b2vector b,
const df1b2variable c 
)

Holling Type IV function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable vector in a random effects model
c; differentiable scalar in a random effects model
Returns:
$ \frac{ax^2}{b + cx + x^2} $

Definition at line 223 of file HollingIV.cpp.

df1b2vector HollingIV ( const dvector x,
const df1b2vector a,
const df1b2vector b,
const df1b2variable c 
)

Holling Type IV function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable vector in a random effects model
c; differentiable scalar in a random effects model
Returns:
$ \frac{ax^2}{b + cx + x^2} $

Definition at line 238 of file HollingIV.cpp.

df1b2vector HollingIV ( const dvector x,
const df1b2variable a,
const df1b2variable b,
const df1b2vector c 
)

Holling Type IV function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
c; differentiable vector in a random effects model
Returns:
$ \frac{ax^2}{b + cx + x^2} $

Definition at line 258 of file HollingIV.cpp.

df1b2vector HollingIV ( const dvector x,
const df1b2vector a,
const df1b2variable b,
const df1b2vector c 
)

Holling Type IV function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable scalar in a random effects model
c; differentiable vector in a random effects model
Returns:
$ \frac{ax^2}{b + cx + x^2} $

Definition at line 273 of file HollingIV.cpp.

df1b2vector HollingIV ( const dvector x,
const df1b2variable a,
const df1b2vector b,
const df1b2vector c 
)

Holling Type IV function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable vector in a random effects model
c; differentiable vector in a random effects model
Returns:
$ \frac{ax^2}{b + cx + x^2} $

Definition at line 291 of file HollingIV.cpp.

df1b2vector HollingIV ( const dvector x,
const df1b2vector a,
const df1b2vector b,
const df1b2vector c 
)

Holling Type IV function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable vector in a random effects model
c; differentiable vector in a random effects model
Returns:
$ \frac{ax^2}{b + cx + x^2} $

Definition at line 306 of file HollingIV.cpp.

dvariable logistic ( const double &  x,
const prevariable a,
const prevariable b 
)

logistic function; scalar

Parameters:
xindependent variable; data scalar
a; differentiable scalar
b; differentiable scalar
Returns:
$ \frac{e^{a+bx}}{(1+e^{a+bx})} $

Definition at line 14 of file ecolib/logistic.cpp.

dvar_vector logistic ( const dvector x,
const prevariable a,
const prevariable b 
)

logistic function; vectorized

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable scalar
Returns:
$ \frac{e^{a+bx}}{(1+e^{a+bx})} $

Definition at line 30 of file ecolib/logistic.cpp.

dvar_vector logistic ( const dvector x,
const dvar_vector a,
const prevariable b 
)

logistic function; vectorized

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable scalar
Returns:
$ \frac{e^{a+bx}}{(1+e^{a+bx})} $

Definition at line 46 of file ecolib/logistic.cpp.

dvar_vector logistic ( const dvector x,
const prevariable a,
const dvar_vector b 
)

logistic function; vectorized

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable vector
Returns:
$ \frac{e^{a+bx}}{(1+e^{a+bx})} $

Definition at line 63 of file ecolib/logistic.cpp.

dvar_vector logistic ( const dvector x,
const dvar_vector a,
const dvar_vector b 
)

logistic function; vectorized

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable vector
Returns:
$ \frac{e^{a+bx}}{(1+e^{a+bx})} $

Definition at line 79 of file ecolib/logistic.cpp.

df1b2variable logistic ( const double &  x,
const df1b2variable a,
const df1b2variable b 
)

logistic function; random effects scalar

Parameters:
xindependent variable; data scalar
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
Returns:
$ \frac{e^{a+bx}}{(1+e^{a+bx})} $

Definition at line 97 of file ecolib/logistic.cpp.

df1b2vector logistic ( const dvector x,
const df1b2variable a,
const df1b2variable b 
)

logistic function; random effects vectorized

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
Returns:
$ \frac{e^{a+bx}}{(1+e^{a+bx})} $

Definition at line 111 of file ecolib/logistic.cpp.

df1b2vector logistic ( const dvector x,
const df1b2vector a,
const df1b2variable b 
)

logistic function; random effects vectorized

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable scalar in a random effects model
Returns:
$ \frac{e^{a+bx}}{(1+e^{a+bx})} $

Definition at line 125 of file ecolib/logistic.cpp.

df1b2vector logistic ( const dvector x,
const df1b2variable a,
const df1b2vector b 
)

logistic function; random effects vectorized

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable vector in a random effects model
Returns:
$ \frac{e^{a+bx}}{(1+e^{a+bx})} $

Definition at line 142 of file ecolib/logistic.cpp.

df1b2vector logistic ( const dvector x,
const df1b2vector a,
const df1b2vector b 
)

logistic function; random effects vectorized

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable vector in a random effects model
Returns:
$ \frac{e^{a+bx}}{(1+e^{a+bx})} $

Definition at line 156 of file ecolib/logistic.cpp.

dvariable logistic3 ( const double &  x,
const prevariable a,
const prevariable b,
const prevariable c 
)

logistic function with carrying capacity c; scalar

Parameters:
xindependent variable; data scalar
a; differentiable scalar
b; differentiable scalar
ccarrying capacity; differentiable scalar
Returns:
$ \frac{c}{1+e^{-(a+bx)}} $

Definition at line 15 of file logistic3.cpp.

dvar_vector logistic3 ( const dvector x,
const prevariable a,
const prevariable b,
const prevariable c 
)

logistic function with carrying capacity c; vectorized

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable scalar
ccarrying capacity; differentiable scalar
Returns:
$ \frac{c}{1+e^{-(a+bx)}} $

Definition at line 32 of file logistic3.cpp.

dvar_vector logistic3 ( const dvector x,
const dvar_vector a,
const prevariable b,
const prevariable c 
)

logistic function with carrying capacity c; vectorized

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable scalar
ccarrying capacity; differentiable scalar
Returns:
$ \frac{c}{1+e^{-(a+bx)}} $

Definition at line 49 of file logistic3.cpp.

dvar_vector logistic3 ( const dvector x,
const prevariable a,
const dvar_vector b,
const prevariable c 
)

logistic function with carrying capacity c; vectorized

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable vector
ccarrying capacity; differentiable scalar
Returns:
$ \frac{c}{1+e^{-(a+bx)}} $

Definition at line 67 of file logistic3.cpp.

dvar_vector logistic3 ( const dvector x,
const dvar_vector a,
const dvar_vector b,
const prevariable c 
)

logistic function with carrying capacity c; vectorized

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable vector
ccarrying capacity; differentiable scalar
Returns:
$ \frac{c}{1+e^{-(a+bx)}} $

Definition at line 84 of file logistic3.cpp.

dvar_vector logistic3 ( const dvector x,
const prevariable a,
const prevariable b,
const dvar_vector c 
)

logistic function with carrying capacity c; vectorized

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable scalar
ccarrying capacity; differentiable vector
Returns:
$ \frac{c}{1+e^{-(a+bx)}} $

Definition at line 103 of file logistic3.cpp.

dvar_vector logistic3 ( const dvector x,
const dvar_vector a,
const prevariable b,
const dvar_vector c 
)

logistic function with carrying capacity c; vectorized

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable scalar
ccarrying capacity; differentiable vector
Returns:
$ \frac{c}{1+e^{-(a+bx)}} $

Definition at line 120 of file logistic3.cpp.

dvar_vector logistic3 ( const dvector x,
const prevariable a,
const dvar_vector b,
const dvar_vector c 
)

logistic function with carrying capacity c; vectorized

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable vector
ccarrying capacity; differentiable vector
Returns:
$ \frac{c}{1+e^{-(a+bx)}} $

Definition at line 138 of file logistic3.cpp.

dvar_vector logistic3 ( const dvector x,
const dvar_vector a,
const dvar_vector b,
const dvar_vector c 
)

logistic function with carrying capacity c; vectorized

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable vector
ccarrying capacity; differentiable vector
Returns:
$ \frac{c}{1+e^{-(a+bx)}} $

Definition at line 155 of file logistic3.cpp.

df1b2variable logistic3 ( const double &  x,
const df1b2variable a,
const df1b2variable b,
const df1b2variable c 
)

logistic function with carrying capacity c; random effects scalar

Parameters:
xindependent variable; data scalar
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
ccarrying capacity; differentiable scalar in a random effects model
Returns:
$ \frac{c}{1+e^{-(a+bx)}} $

Definition at line 175 of file logistic3.cpp.

df1b2vector logistic3 ( const dvector x,
const df1b2variable a,
const df1b2variable b,
const df1b2variable c 
)

logistic function with carrying capacity c; random effects vectorized

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
ccarrying capacity; differentiable scalar in a random effects model
Returns:
$ \frac{c}{1+e^{-(a+bx)}} $

Definition at line 190 of file logistic3.cpp.

df1b2vector logistic3 ( const dvector x,
const df1b2vector a,
const df1b2variable b,
const df1b2variable c 
)

logistic function with carrying capacity c; random effects vectorized

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable scalar in a random effects model
ccarrying capacity; differentiable scalar in a random effects model
Returns:
$ \frac{c}{1+e^{-(a+bx)}} $

Definition at line 205 of file logistic3.cpp.

df1b2vector logistic3 ( const dvector x,
const df1b2variable a,
const df1b2vector b,
const df1b2variable c 
)

logistic function with carrying capacity c; random effects vectorized

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable vector in a random effects model
ccarrying capacity; differentiable scalar in a random effects model
Returns:
$ \frac{c}{1+e^{-(a+bx)}} $

Definition at line 223 of file logistic3.cpp.

df1b2vector logistic3 ( const dvector x,
const df1b2vector a,
const df1b2vector b,
const df1b2variable c 
)

logistic function with carrying capacity c; random effects vectorized

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable vector in a random effects model
ccarrying capacity; differentiable scalar in a random effects model
Returns:
$ \frac{c}{1+e^{-(a+bx)}} $

Definition at line 238 of file logistic3.cpp.

df1b2vector logistic3 ( const dvector x,
const df1b2variable a,
const df1b2variable b,
const df1b2vector c 
)

logistic function with carrying capacity c; random effects vectorized

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
ccarrying capacity; differentiable vector in a random effects model
Returns:
$ \frac{c}{1+e^{-(a+bx)}} $

Definition at line 258 of file logistic3.cpp.

df1b2vector logistic3 ( const dvector x,
const df1b2vector a,
const df1b2variable b,
const df1b2vector c 
)

logistic function with carrying capacity c; random effects vectorized

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable scalar in a random effects model
ccarrying capacity; differentiable vector in a random effects model
Returns:
$ \frac{c}{1+e^{-(a+bx)}} $

Definition at line 273 of file logistic3.cpp.

df1b2vector logistic3 ( const dvector x,
const df1b2variable a,
const df1b2vector b,
const df1b2vector c 
)

logistic function with carrying capacity c; random effects vectorized

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable vector in a random effects model
ccarrying capacity; differentiable vector in a random effects model
Returns:
$ \frac{c}{1+e^{-(a+bx)}} $

Definition at line 291 of file logistic3.cpp.

df1b2vector logistic3 ( const dvector x,
const df1b2vector a,
const df1b2vector b,
const df1b2vector c 
)

logistic function with carrying capacity c; random effects vectorized

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable vector in a random effects model
ccarrying capacity; differentiable vector in a random effects model
Returns:
$ \frac{c}{1+e^{-(a+bx)}} $

Definition at line 306 of file logistic3.cpp.

dvariable logisticK ( const double &  t,
const prevariable K,
const prevariable r,
const prevariable n0 
)

ecologically parameterized logistic function with carrying capacity K; scalar

Parameters:
tindependent variable; data scalar
Kcarrying capacity; differentiable scalar
rgrowth rate; differentiable scalar
n0initial population size at t=0; differentiable scalar
Returns:
$ \frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} $

Definition at line 15 of file logisticK.cpp.

dvar_vector logisticK ( const dvector t,
const prevariable K,
const prevariable r,
const prevariable n0 
)

ecologically parameterized logistic function with carrying capacity K; vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable scalar
rgrowth rate; differentiable scalar
n0initial population size at t=0; differentiable scalar
Returns:
$ \frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} $

Definition at line 32 of file logisticK.cpp.

dvar_vector logisticK ( const dvector t,
const dvar_vector K,
const prevariable r,
const prevariable n0 
)

ecologically parameterized logistic function with carrying capacity K; vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable vector
rgrowth rate; differentiable scalar
n0initial population size at t=0; differentiable scalar
Returns:
$ \frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} $

Definition at line 49 of file logisticK.cpp.

dvar_vector logisticK ( const dvector t,
const prevariable K,
const dvar_vector r,
const prevariable n0 
)

ecologically parameterized logistic function with carrying capacity K; vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable scalar
rgrowth rate; differentiable vector
n0initial population size at t=0; differentiable scalar
Returns:
$ \frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} $

Definition at line 67 of file logisticK.cpp.

dvar_vector logisticK ( const dvector t,
const dvar_vector K,
const dvar_vector r,
const prevariable n0 
)

ecologically parameterized logistic function with carrying capacity K; vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable vector
rgrowth rate; differentiable vector
n0initial population size at t=0; differentiable scalar
Returns:
$ \frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} $

Definition at line 84 of file logisticK.cpp.

dvar_vector logisticK ( const dvector t,
const prevariable K,
const prevariable r,
const dvar_vector n0 
)

ecologically parameterized logistic function with carrying capacity K; vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable scalar
rgrowth rate; differentiable scalar
n0initial population size at t=0; differentiable vector
Returns:
$ \frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} $

Definition at line 103 of file logisticK.cpp.

dvar_vector logisticK ( const dvector t,
const dvar_vector K,
const prevariable r,
const dvar_vector n0 
)

ecologically parameterized logistic function with carrying capacity K; vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable vector
rgrowth rate; differentiable scalar
n0initial population size at t=0; differentiable vector
Returns:
$ \frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} $

Definition at line 120 of file logisticK.cpp.

dvar_vector logisticK ( const dvector t,
const prevariable K,
const dvar_vector r,
const dvar_vector n0 
)

ecologically parameterized logistic function with carrying capacity K; vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable scalar
rgrowth rate; differentiable vector
n0initial population size at t=0; differentiable vector
Returns:
$ \frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} $

Definition at line 138 of file logisticK.cpp.

dvar_vector logisticK ( const dvector t,
const dvar_vector K,
const dvar_vector r,
const dvar_vector n0 
)

ecologically parameterized logistic function with carrying capacity K; vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable vector
rgrowth rate; differentiable vector
n0initial population size at t=0; differentiable vector
Returns:
$ \frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} $

Definition at line 155 of file logisticK.cpp.

df1b2variable logisticK ( const double &  t,
const df1b2variable K,
const df1b2variable r,
const df1b2variable n0 
)

ecologically parameterized logistic function with carrying capacity K; random effects scalar

Parameters:
tindependent variable; data scalar
Kcarrying capacity; differentiable scalar in a random effects model
rgrowth rate; differentiable scalar in a random effects model
n0initial population size at t=0; differentiable scalar in a random effects model
Returns:
$ \frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} $

Definition at line 175 of file logisticK.cpp.

df1b2vector logisticK ( const dvector t,
const df1b2variable K,
const df1b2variable r,
const df1b2variable n0 
)

ecologically parameterized logistic function with carrying capacity K; random effects vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable scalar in a random effects model
rgrowth rate; differentiable scalar in a random effects model
n0initial population size at t=0; differentiable scalar in a random effects model
Returns:
$ \frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} $

Definition at line 190 of file logisticK.cpp.

df1b2vector logisticK ( const dvector t,
const df1b2vector K,
const df1b2variable r,
const df1b2variable n0 
)

ecologically parameterized logistic function with carrying capacity K; random effects vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable vector in a random effects model
rgrowth rate; differentiable scalar in a random effects model
n0initial population size at t=0; differentiable scalar in a random effects model
Returns:
$ \frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} $

Definition at line 205 of file logisticK.cpp.

df1b2vector logisticK ( const dvector t,
const df1b2variable K,
const df1b2vector r,
const df1b2variable n0 
)

ecologically parameterized logistic function with carrying capacity K; random effects vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable scalar in a random effects model
rgrowth rate; differentiable vector in a random effects model
n0initial population size at t=0; differentiable scalar in a random effects model
Returns:
$ \frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} $

Definition at line 223 of file logisticK.cpp.

df1b2vector logisticK ( const dvector t,
const df1b2vector K,
const df1b2vector r,
const df1b2variable n0 
)

ecologically parameterized logistic function with carrying capacity K; random effects vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable vector in a random effects model
rgrowth rate; differentiable vector in a random effects model
n0initial population size at t=0; differentiable scalar in a random effects model
Returns:
$ \frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} $

Definition at line 238 of file logisticK.cpp.

df1b2vector logisticK ( const dvector t,
const df1b2variable K,
const df1b2variable r,
const df1b2vector n0 
)

ecologically parameterized logistic function with carrying capacity K; random effects vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable scalar in a random effects model
rgrowth rate; differentiable scalar in a random effects model
n0initial population size at t=0; differentiable vector in a random effects model
Returns:
$ \frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} $

Definition at line 258 of file logisticK.cpp.

df1b2vector logisticK ( const dvector t,
const df1b2vector K,
const df1b2variable r,
const df1b2vector n0 
)

ecologically parameterized logistic function with carrying capacity K; random effects vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable vector in a random effects model
rgrowth rate; differentiable scalar in a random effects model
n0initial population size at t=0; differentiable vector in a random effects model
Returns:
$ \frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} $

Definition at line 273 of file logisticK.cpp.

df1b2vector logisticK ( const dvector t,
const df1b2variable K,
const df1b2vector r,
const df1b2vector n0 
)

ecologically parameterized logistic function with carrying capacity K; random effects vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable scalar in a random effects model
rgrowth rate; differentiable vector in a random effects model
n0initial population size at t=0; differentiable vector in a random effects model
Returns:
$ \frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} $

Definition at line 291 of file logisticK.cpp.

df1b2vector logisticK ( const dvector t,
const df1b2vector K,
const df1b2vector r,
const df1b2vector n0 
)

ecologically parameterized logistic function with carrying capacity K; random effects vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable vector in a random effects model
rgrowth rate; differentiable vector in a random effects model
n0initial population size at t=0; differentiable vector in a random effects model
Returns:
$ \frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} $

Definition at line 306 of file logisticK.cpp.

dvariable Michaelis_Menten1 ( const double &  x,
const prevariable a,
const prevariable b 
)

Michaelis Menten function, 1st parametarization; scalar.

Parameters:
xindependent variable; data scalar
a; differentiable scalar
b; differentiable scalar
Returns:
$ \frac{ax}{b+x} $

Definition at line 14 of file Michaelis_Menten1.cpp.

dvar_vector Michaelis_Menten1 ( const dvector x,
const prevariable a,
const prevariable b 
)

Michaelis Menten function, 1st parametarization; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable scalar
Returns:
$ \frac{ax}{b+x} $

Definition at line 30 of file Michaelis_Menten1.cpp.

dvar_vector Michaelis_Menten1 ( const dvector x,
const dvar_vector a,
const prevariable b 
)

Michaelis Menten function, 1st parametarization; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable scalar
Returns:
$ \frac{ax}{b+x} $

Definition at line 46 of file Michaelis_Menten1.cpp.

dvar_vector Michaelis_Menten1 ( const dvector x,
const prevariable a,
const dvar_vector b 
)

Michaelis Menten function, 1st parametarization; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable vector
Returns:
$ \frac{ax}{b+x} $

Definition at line 63 of file Michaelis_Menten1.cpp.

dvar_vector Michaelis_Menten1 ( const dvector x,
const dvar_vector a,
const dvar_vector b 
)

Michaelis Menten function, 1st parametarization; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable vector
Returns:
$ \frac{ax}{b+x} $

Definition at line 79 of file Michaelis_Menten1.cpp.

df1b2variable Michaelis_Menten1 ( const double &  x,
const df1b2variable a,
const df1b2variable b 
)

Michaelis Menten function, 1st parametarization; random effects scalar.

Parameters:
xindependent variable; data scalar
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
Returns:
$ \frac{ax}{b+x} $

Definition at line 97 of file Michaelis_Menten1.cpp.

df1b2vector Michaelis_Menten1 ( const dvector x,
const df1b2variable a,
const df1b2variable b 
)

Michaelis Menten function, 1st parametarization; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
Returns:
$ \frac{ax}{b+x} $

Definition at line 111 of file Michaelis_Menten1.cpp.

df1b2vector Michaelis_Menten1 ( const dvector x,
const df1b2vector a,
const df1b2variable b 
)

Michaelis Menten function, 1st parametarization; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable scalar in a random effects model
Returns:
$ \frac{ax}{b+x} $

Definition at line 125 of file Michaelis_Menten1.cpp.

df1b2vector Michaelis_Menten1 ( const dvector x,
const df1b2variable a,
const df1b2vector b 
)

Michaelis Menten function, 1st parametarization; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable vector in a random effects model
Returns:
$ \frac{ax}{b+x} $

Definition at line 142 of file Michaelis_Menten1.cpp.

df1b2vector Michaelis_Menten1 ( const dvector x,
const df1b2vector a,
const df1b2vector b 
)

Michaelis Menten function, 1st parametarization; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable vector in a random effects model
Returns:
$ \frac{ax}{b+x} $

Definition at line 156 of file Michaelis_Menten1.cpp.

dvariable Michaelis_Menten2 ( const double &  x,
const prevariable a,
const prevariable b 
)

Michaelis Menten function, 2nd parameterization; scalar.

Parameters:
xindependent variable; data scalar
a; differentiable scalar
b; differentiable scalar
Returns:
$ \frac{ax}{a/b+x} $

Definition at line 14 of file Michaelis_Menten2.cpp.

dvar_vector Michaelis_Menten2 ( const dvector x,
const prevariable a,
const prevariable b 
)

Michaelis Menten function, 2nd parameterization; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable scalar
Returns:
$ \frac{ax}{a/b+x} $

Definition at line 30 of file Michaelis_Menten2.cpp.

dvar_vector Michaelis_Menten2 ( const dvector x,
const dvar_vector a,
const prevariable b 
)

Michaelis Menten function, 2nd parameterization; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable scalar
Returns:
$ \frac{ax}{a/b+x} $

Definition at line 46 of file Michaelis_Menten2.cpp.

dvar_vector Michaelis_Menten2 ( const dvector x,
const prevariable a,
const dvar_vector b 
)

Michaelis Menten function, 2nd parameterization; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable vector
Returns:
$ \frac{ax}{a/b+x} $

Definition at line 63 of file Michaelis_Menten2.cpp.

dvar_vector Michaelis_Menten2 ( const dvector x,
const dvar_vector a,
const dvar_vector b 
)

Michaelis Menten function, 2nd parameterization; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable vector
Returns:
$ \frac{ax}{a/b+x} $

Definition at line 79 of file Michaelis_Menten2.cpp.

df1b2variable Michaelis_Menten2 ( const double &  x,
const df1b2variable a,
const df1b2variable b 
)

Michaelis Menten function, 2nd parameterization; random effects scalar.

Parameters:
xindependent variable; data scalar
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
Returns:
$ \frac{ax}{a/b+x} $

Definition at line 97 of file Michaelis_Menten2.cpp.

df1b2vector Michaelis_Menten2 ( const dvector x,
const df1b2variable a,
const df1b2variable b 
)

Michaelis Menten function, 2nd parameterization; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
Returns:
$ \frac{ax}{a/b+x} $

Definition at line 111 of file Michaelis_Menten2.cpp.

df1b2vector Michaelis_Menten2 ( const dvector x,
const df1b2vector a,
const df1b2variable b 
)

Michaelis Menten function, 2nd parameterization; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable scalar in a random effects model
Returns:
$ \frac{ax}{a/b+x} $

Definition at line 125 of file Michaelis_Menten2.cpp.

df1b2vector Michaelis_Menten2 ( const dvector x,
const df1b2variable a,
const df1b2vector b 
)

Michaelis Menten function, 2nd parameterization; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable vector in a random effects model
Returns:
$ \frac{ax}{a/b+x} $

Definition at line 142 of file Michaelis_Menten2.cpp.

df1b2vector Michaelis_Menten2 ( const dvector x,
const df1b2vector a,
const df1b2vector b 
)

Michaelis Menten function, 2nd parameterization; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable vector in a random effects model
Returns:
$ \frac{ax}{a/b+x} $

Definition at line 156 of file Michaelis_Menten2.cpp.

dvariable monomolecular ( const double &  x,
const prevariable a,
const prevariable b 
)

monomoleular function; scalar

Parameters:
xindependent variable; data scalar
a; differentiable scalar
b; differentiable scalar
Returns:
$ a(1-e^{-bx}) $

Definition at line 14 of file monomolecular.cpp.

dvar_vector monomolecular ( const dvector x,
const prevariable a,
const prevariable b 
)

monomoleular function; vectorized

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable scalar
Returns:
$ a(1-e^{-bx}) $

Definition at line 30 of file monomolecular.cpp.

dvar_vector monomolecular ( const dvector x,
const dvar_vector a,
const prevariable b 
)

monomoleular function; vectorized

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable scalar
Returns:
$ a(1-e^{-bx}) $

Definition at line 46 of file monomolecular.cpp.

dvar_vector monomolecular ( const dvector x,
const prevariable a,
const dvar_vector b 
)

monomoleular function; vectorized

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable vector
Returns:
$ a(1-e^{-bx}) $

Definition at line 63 of file monomolecular.cpp.

dvar_vector monomolecular ( const dvector x,
const dvar_vector a,
const dvar_vector b 
)

monomoleular function; vectorized

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable vector
Returns:
$ a(1-e^{-bx}) $

Definition at line 79 of file monomolecular.cpp.

df1b2variable monomolecular ( const double &  x,
const df1b2variable a,
const df1b2variable b 
)

monomoleular function; random effects scalar

Parameters:
xindependent variable; data scalar
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
Returns:
$ a(1-e^{-bx}) $

Definition at line 97 of file monomolecular.cpp.

df1b2vector monomolecular ( const dvector x,
const df1b2variable a,
const df1b2variable b 
)

monomoleular function; random effects vectorized

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
Returns:
$ a(1-e^{-bx}) $

Definition at line 111 of file monomolecular.cpp.

df1b2vector monomolecular ( const dvector x,
const df1b2vector a,
const df1b2variable b 
)

monomoleular function; random effects vectorized

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable scalar in a random effects model
Returns:
$ a(1-e^{-bx}) $

Definition at line 125 of file monomolecular.cpp.

df1b2vector monomolecular ( const dvector x,
const df1b2variable a,
const df1b2vector b 
)

monomoleular function; random effects vectorized

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable vector in a random effects model
Returns:
$ a(1-e^{-bx}) $

Definition at line 142 of file monomolecular.cpp.

df1b2vector monomolecular ( const dvector x,
const df1b2vector a,
const df1b2vector b 
)

monomoleular function; random effects vectorized

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable vector in a random effects model
Returns:
$ a(1-e^{-bx}) $

Definition at line 156 of file monomolecular.cpp.

dvariable nonrectangular_hyperbola ( const double &  x,
const prevariable theta,
const prevariable alpha,
const prevariable pmax 
)

nonrectangular hyperbolic function; scalar

Parameters:
xindependent variable; data scalar
theta; differentiable scalar
alpha; differentiable scalar
pmax; differentiable scalar
Returns:
$ \frac{1}{2\theta} (\alpha x +p_{max} - \sqrt{(\alpha x +p_{max})^2-4\theta \alpha x p_{max}}) $

Definition at line 15 of file nonrectangular_hyperbola.cpp.

dvar_vector nonrectangular_hyperbola ( const dvector x,
const prevariable theta,
const prevariable alpha,
const prevariable pmax 
)

nonrectangular hyperbolic function; vectorized

Parameters:
xindependent variable; data vector
theta; differentiable scalar
alpha; differentiable scalar
pmax; differentiable scalar
Returns:
$ \frac{1}{2\theta} (\alpha x +p_{max} - \sqrt{(\alpha x +p_{max})^2-4\theta \alpha x p_{max}}) $

Definition at line 32 of file nonrectangular_hyperbola.cpp.

dvar_vector nonrectangular_hyperbola ( const dvector x,
const dvar_vector theta,
const prevariable alpha,
const prevariable pmax 
)

nonrectangular hyperbolic function; vectorized

Parameters:
xindependent variable; data vector
theta; differentiable vector
alpha; differentiable scalar
pmax; differentiable scalar
Returns:
$ \frac{1}{2\theta} (\alpha x +p_{max} - \sqrt{(\alpha x +p_{max})^2-4\theta \alpha x p_{max}}) $

Definition at line 49 of file nonrectangular_hyperbola.cpp.

dvar_vector nonrectangular_hyperbola ( const dvector x,
const prevariable theta,
const dvar_vector alpha,
const prevariable pmax 
)

nonrectangular hyperbolic function; vectorized

Parameters:
xindependent variable; data vector
theta; differentiable scalar
alpha; differentiable vector
pmax; differentiable scalar
Returns:
$ \frac{1}{2\theta} (\alpha x +p_{max} - \sqrt{(\alpha x +p_{max})^2-4\theta \alpha x p_{max}}) $

Definition at line 67 of file nonrectangular_hyperbola.cpp.

dvar_vector nonrectangular_hyperbola ( const dvector x,
const dvar_vector theta,
const dvar_vector alpha,
const prevariable pmax 
)

nonrectangular hyperbolic function; vectorized

Parameters:
xindependent variable; data vector
theta; differentiable vector
alpha; differentiable vector
pmax; differentiable scalar
Returns:
$ \frac{1}{2\theta} (\alpha x +p_{max} - \sqrt{(\alpha x +p_{max})^2-4\theta \alpha x p_{max}}) $

Definition at line 84 of file nonrectangular_hyperbola.cpp.

dvar_vector nonrectangular_hyperbola ( const dvector x,
const prevariable theta,
const prevariable alpha,
const dvar_vector pmax 
)

nonrectangular hyperbolic function; vectorized

Parameters:
xindependent variable; data vector
theta; differentiable scalar
alpha; differentiable scalar
pmax; differentiable vector
Returns:
$ \frac{1}{2\theta} (\alpha x +p_{max} - \sqrt{(\alpha x +p_{max})^2-4\theta \alpha x p_{max}}) $

Definition at line 103 of file nonrectangular_hyperbola.cpp.

dvar_vector nonrectangular_hyperbola ( const dvector x,
const dvar_vector theta,
const prevariable alpha,
const dvar_vector pmax 
)

nonrectangular hyperbolic function; vectorized

Parameters:
xindependent variable; data vector
theta; differentiable vector
alpha; differentiable scalar
pmax; differentiable vector
Returns:
$ \frac{1}{2\theta} (\alpha x +p_{max} - \sqrt{(\alpha x +p_{max})^2-4\theta \alpha x p_{max}}) $

Definition at line 120 of file nonrectangular_hyperbola.cpp.

dvar_vector nonrectangular_hyperbola ( const dvector x,
const prevariable theta,
const dvar_vector alpha,
const dvar_vector pmax 
)

nonrectangular hyperbolic function; vectorized

Parameters:
xindependent variable; data vector
theta; differentiable scalar
alpha; differentiable vector
pmax; differentiable vector
Returns:
$ \frac{1}{2\theta} (\alpha x +p_{max} - \sqrt{(\alpha x +p_{max})^2-4\theta \alpha x p_{max}}) $

Definition at line 138 of file nonrectangular_hyperbola.cpp.

dvar_vector nonrectangular_hyperbola ( const dvector x,
const dvar_vector theta,
const dvar_vector alpha,
const dvar_vector pmax 
)

nonrectangular hyperbolic function; vectorized

Parameters:
xindependent variable; data vector
theta; differentiable vector
alpha; differentiable vector
pmax; differentiable vector
Returns:
$ \frac{1}{2\theta} (\alpha x +p_{max} - \sqrt{(\alpha x +p_{max})^2-4\theta \alpha x p_{max}}) $

Definition at line 155 of file nonrectangular_hyperbola.cpp.

df1b2variable nonrectangular_hyperbola ( const double &  x,
const df1b2variable theta,
const df1b2variable alpha,
const df1b2variable pmax 
)

nonrectangular hyperbolic function; random effects scalar

Parameters:
xindependent variable; data scalar
theta; differentiable scalar in a random effects model
alpha; differentiable scalar in a random effects model
pmax; differentiable scalar in a random effects model
Returns:
$ \frac{1}{2\theta} (\alpha x +p_{max} - \sqrt{(\alpha x +p_{max})^2-4\theta \alpha x p_{max}}) $

Definition at line 175 of file nonrectangular_hyperbola.cpp.

df1b2vector nonrectangular_hyperbola ( const dvector x,
const df1b2variable theta,
const df1b2variable alpha,
const df1b2variable pmax 
)

nonrectangular hyperbolic function; random effects vectorized

Parameters:
xindependent variable; data vector
theta; differentiable scalar in a random effects model
alpha; differentiable scalar in a random effects model
pmax; differentiable scalar in a random effects model
Returns:
$ \frac{1}{2\theta} (\alpha x +p_{max} - \sqrt{(\alpha x +p_{max})^2-4\theta \alpha x p_{max}}) $

Definition at line 190 of file nonrectangular_hyperbola.cpp.

df1b2vector nonrectangular_hyperbola ( const dvector x,
const df1b2vector theta,
const df1b2variable alpha,
const df1b2variable pmax 
)

nonrectangular hyperbolic function; random effects vectorized

Parameters:
xindependent variable; data vector
theta; differentiable vector in a random effects model
alpha; differentiable scalar in a random effects model
pmax; differentiable scalar in a random effects model
Returns:
$ \frac{1}{2\theta} (\alpha x +p_{max} - \sqrt{(\alpha x +p_{max})^2-4\theta \alpha x p_{max}}) $

Definition at line 205 of file nonrectangular_hyperbola.cpp.

df1b2vector nonrectangular_hyperbola ( const dvector x,
const df1b2variable theta,
const df1b2vector alpha,
const df1b2variable pmax 
)

nonrectangular hyperbolic function; random effects vectorized

Parameters:
xindependent variable; data vector
theta; differentiable scalar in a random effects model
alpha; differentiable vector in a random effects model
pmax; differentiable scalar in a random effects model
Returns:
$ \frac{1}{2\theta} (\alpha x +p_{max} - \sqrt{(\alpha x +p_{max})^2-4\theta \alpha x p_{max}}) $

Definition at line 223 of file nonrectangular_hyperbola.cpp.

df1b2vector nonrectangular_hyperbola ( const dvector x,
const df1b2vector theta,
const df1b2vector alpha,
const df1b2variable pmax 
)

nonrectangular hyperbolic function; random effects vectorized

Parameters:
xindependent variable; data vector
theta; differentiable vector in a random effects model
alpha; differentiable vector in a random effects model
pmax; differentiable scalar in a random effects model
Returns:
$ \frac{1}{2\theta} (\alpha x +p_{max} - \sqrt{(\alpha x +p_{max})^2-4\theta \alpha x p_{max}}) $

Definition at line 238 of file nonrectangular_hyperbola.cpp.

df1b2vector nonrectangular_hyperbola ( const dvector x,
const df1b2variable theta,
const df1b2variable alpha,
const df1b2vector pmax 
)

nonrectangular hyperbolic function; random effects vectorized

Parameters:
xindependent variable; data vector
theta; differentiable scalar in a random effects model
alpha; differentiable scalar in a random effects model
pmax; differentiable vector in a random effects model
Returns:
$ \frac{1}{2\theta} (\alpha x +p_{max} - \sqrt{(\alpha x +p_{max})^2-4\theta \alpha x p_{max}}) $

Definition at line 258 of file nonrectangular_hyperbola.cpp.

df1b2vector nonrectangular_hyperbola ( const dvector x,
const df1b2vector theta,
const df1b2variable alpha,
const df1b2vector pmax 
)

nonrectangular hyperbolic function; random effects vectorized

Parameters:
xindependent variable; data vector
theta; differentiable vector in a random effects model
alpha; differentiable scalar in a random effects model
pmax; differentiable vector in a random effects model
Returns:
$ \frac{1}{2\theta} (\alpha x +p_{max} - \sqrt{(\alpha x +p_{max})^2-4\theta \alpha x p_{max}}) $

Definition at line 273 of file nonrectangular_hyperbola.cpp.

df1b2vector nonrectangular_hyperbola ( const dvector x,
const df1b2variable theta,
const df1b2vector alpha,
const df1b2vector pmax 
)

nonrectangular hyperbolic function; random effects vectorized

Parameters:
xindependent variable; data vector
theta; differentiable scalar in a random effects model
alpha; differentiable vector in a random effects model
pmax; differentiable vector in a random effects model
Returns:
$ \frac{1}{2\theta} (\alpha x +p_{max} - \sqrt{(\alpha x +p_{max})^2-4\theta \alpha x p_{max}}) $

Definition at line 291 of file nonrectangular_hyperbola.cpp.

df1b2vector nonrectangular_hyperbola ( const dvector x,
const df1b2vector theta,
const df1b2vector alpha,
const df1b2vector pmax 
)

nonrectangular hyperbolic function; random effects vectorized

Parameters:
xindependent variable; data vector
theta; differentiable vector in a random effects model
alpha; differentiable vector in a random effects model
pmax; differentiable vector in a random effects model
Returns:
$ \frac{1}{2\theta} (\alpha x +p_{max} - \sqrt{(\alpha x +p_{max})^2-4\theta \alpha x p_{max}}) $

Definition at line 306 of file nonrectangular_hyperbola.cpp.

dvariable Ricker ( const double &  x,
const prevariable a,
const prevariable b 
)

Ricker function; scalar.

Parameters:
xindependent variable; data scalar
a; differentiable scalar
b; differentiable scalar
Returns:
$ axe^{-bx} $

Definition at line 14 of file Ricker.cpp.

dvar_vector Ricker ( const dvector x,
const prevariable a,
const prevariable b 
)

Ricker function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable scalar
Returns:
$ axe^{-bx} $

Definition at line 30 of file Ricker.cpp.

dvar_vector Ricker ( const dvector x,
const dvar_vector a,
const prevariable b 
)

Ricker function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable scalar
Returns:
$ axe^{-bx} $

Definition at line 46 of file Ricker.cpp.

dvar_vector Ricker ( const dvector x,
const prevariable a,
const dvar_vector b 
)

Ricker function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable vector
Returns:
$ axe^{-bx} $

Definition at line 63 of file Ricker.cpp.

dvar_vector Ricker ( const dvector x,
const dvar_vector a,
const dvar_vector b 
)

Ricker function; vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable vector
Returns:
$ axe^{-bx} $

Definition at line 79 of file Ricker.cpp.

df1b2variable Ricker ( const double &  x,
const df1b2variable a,
const df1b2variable b 
)

Ricker function; random effects scalar.

Parameters:
xindependent variable; data scalar
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
Returns:
$ axe^{-bx} $

Definition at line 97 of file Ricker.cpp.

df1b2vector Ricker ( const dvector x,
const df1b2variable a,
const df1b2variable b 
)

Ricker function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
Returns:
$ axe^{-bx} $

Definition at line 111 of file Ricker.cpp.

df1b2vector Ricker ( const dvector x,
const df1b2vector a,
const df1b2variable b 
)

Ricker function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable scalar in a random effects model
Returns:
$ axe^{-bx} $

Definition at line 125 of file Ricker.cpp.

df1b2vector Ricker ( const dvector x,
const df1b2variable a,
const df1b2vector b 
)

Ricker function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable vector in a random effects model
Returns:
$ axe^{-bx} $

Definition at line 142 of file Ricker.cpp.

df1b2vector Ricker ( const dvector x,
const df1b2vector a,
const df1b2vector b 
)

Ricker function; random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable vector in a random effects model
Returns:
$ axe^{-bx} $

Definition at line 156 of file Ricker.cpp.

dvariable Shepherd ( const double &  x,
const prevariable a,
const prevariable b,
const prevariable c 
)

Shepherd function scalar.

Parameters:
xindependent variable; data scalar
a; differentiable scalar
b; differentiable scalar
c; differentiable scalar
Returns:
$ \frac{ax}{b+x^c} $

Definition at line 15 of file Shepherd.cpp.

dvar_vector Shepherd ( const dvector x,
const prevariable a,
const prevariable b,
const prevariable c 
)

Shepherd function vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable scalar
c; differentiable scalar
Returns:
$ \frac{ax}{b+x^c} $

Definition at line 32 of file Shepherd.cpp.

dvar_vector Shepherd ( const dvector x,
const dvar_vector a,
const prevariable b,
const prevariable c 
)

Shepherd function vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable scalar
c; differentiable scalar
Returns:
$ \frac{ax}{b+x^c} $

Definition at line 49 of file Shepherd.cpp.

dvar_vector Shepherd ( const dvector x,
const prevariable a,
const dvar_vector b,
const prevariable c 
)

Shepherd function vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable vector
c; differentiable scalar
Returns:
$ \frac{ax}{b+x^c} $

Definition at line 67 of file Shepherd.cpp.

dvar_vector Shepherd ( const dvector x,
const dvar_vector a,
const dvar_vector b,
const prevariable c 
)

Shepherd function vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable vector
c; differentiable scalar
Returns:
$ \frac{ax}{b+x^c} $

Definition at line 84 of file Shepherd.cpp.

dvar_vector Shepherd ( const dvector x,
const prevariable a,
const prevariable b,
const dvar_vector c 
)

Shepherd function vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable scalar
c; differentiable vector
Returns:
$ \frac{ax}{b+x^c} $

Definition at line 103 of file Shepherd.cpp.

dvar_vector Shepherd ( const dvector x,
const dvar_vector a,
const prevariable b,
const dvar_vector c 
)

Shepherd function vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable scalar
c; differentiable vector
Returns:
$ \frac{ax}{b+x^c} $

Definition at line 120 of file Shepherd.cpp.

dvar_vector Shepherd ( const dvector x,
const prevariable a,
const dvar_vector b,
const dvar_vector c 
)

Shepherd function vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar
b; differentiable vector
c; differentiable vector
Returns:
$ \frac{ax}{b+x^c} $

Definition at line 138 of file Shepherd.cpp.

dvar_vector Shepherd ( const dvector x,
const dvar_vector a,
const dvar_vector b,
const dvar_vector c 
)

Shepherd function vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector
b; differentiable vector
c; differentiable vector
Returns:
$ \frac{ax}{b+x^c} $

Definition at line 155 of file Shepherd.cpp.

df1b2variable Shepherd ( const double &  x,
const df1b2variable a,
const df1b2variable b,
const df1b2variable c 
)

Shepherd function random effects scalar.

Parameters:
xindependent variable; data scalar
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
c; differentiable scalar in a random effects model
Returns:
$ \frac{ax}{b+x^c} $

Definition at line 175 of file Shepherd.cpp.

df1b2vector Shepherd ( const dvector x,
const df1b2variable a,
const df1b2variable b,
const df1b2variable c 
)

Shepherd function random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
c; differentiable scalar in a random effects model
Returns:
$ \frac{ax}{b+x^c} $

Definition at line 190 of file Shepherd.cpp.

df1b2vector Shepherd ( const dvector x,
const df1b2vector a,
const df1b2variable b,
const df1b2variable c 
)

Shepherd function random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable scalar in a random effects model
c; differentiable scalar in a random effects model
Returns:
$ \frac{ax}{b+x^c} $

Definition at line 205 of file Shepherd.cpp.

df1b2vector Shepherd ( const dvector x,
const df1b2variable a,
const df1b2vector b,
const df1b2variable c 
)

Shepherd function random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable vector in a random effects model
c; differentiable scalar in a random effects model
Returns:
$ \frac{ax}{b+x^c} $

Definition at line 223 of file Shepherd.cpp.

df1b2vector Shepherd ( const dvector x,
const df1b2vector a,
const df1b2vector b,
const df1b2variable c 
)

Shepherd function random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable vector in a random effects model
c; differentiable scalar in a random effects model
Returns:
$ \frac{ax}{b+x^c} $

Definition at line 238 of file Shepherd.cpp.

df1b2vector Shepherd ( const dvector x,
const df1b2variable a,
const df1b2variable b,
const df1b2vector c 
)

Shepherd function random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable scalar in a random effects model
c; differentiable vector in a random effects model
Returns:
$ \frac{ax}{b+x^c} $

Definition at line 258 of file Shepherd.cpp.

df1b2vector Shepherd ( const dvector x,
const df1b2vector a,
const df1b2variable b,
const df1b2vector c 
)

Shepherd function random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable scalar in a random effects model
c; differentiable vector in a random effects model
Returns:
$ \frac{ax}{b+x^c} $

Definition at line 273 of file Shepherd.cpp.

df1b2vector Shepherd ( const dvector x,
const df1b2variable a,
const df1b2vector b,
const df1b2vector c 
)

Shepherd function random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable scalar in a random effects model
b; differentiable vector in a random effects model
c; differentiable vector in a random effects model
Returns:
$ \frac{ax}{b+x^c} $

Definition at line 291 of file Shepherd.cpp.

df1b2vector Shepherd ( const dvector x,
const df1b2vector a,
const df1b2vector b,
const df1b2vector c 
)

Shepherd function random effects vectorized.

Parameters:
xindependent variable; data vector
a; differentiable vector in a random effects model
b; differentiable vector in a random effects model
c; differentiable vector in a random effects model
Returns:
$ \frac{ax}{b+x^c} $

Definition at line 306 of file Shepherd.cpp.

dvariable theta_logistic ( const double &  t,
const prevariable K,
const prevariable r,
const prevariable n0,
const prevariable theta 
)

theta logistic function; scalar

Parameters:
tindependent variable; data scalar
Kcarrying capacity; differentiable scalar
rgrowth rate; differentiable scalar
n0population size at t=0; differentiable scalar
Returns:
$ (K^{-\theta}+(n0^{-\theta}-K^{-\theta})e^{-r\theta t})^{-1/\theta} $

Definition at line 15 of file theta_logistic.cpp.

dvar_vector theta_logistic ( const dvector t,
const prevariable K,
const prevariable r,
const prevariable n0,
const prevariable theta 
)

theta logistic function; vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable scalar
rgrowth rate; differentiable scalar
n0population size at t=0; differentiable scalar
Returns:
$ (K^{-\theta}+(n0^{-\theta}-K^{-\theta})e^{-r\theta t})^{-1/\theta} $

Definition at line 32 of file theta_logistic.cpp.

dvar_vector theta_logistic ( const dvector t,
const dvar_vector K,
const prevariable r,
const prevariable n0,
const prevariable theta 
)

theta logistic function; vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable vector
rgrowth rate; differentiable scalar
n0population size at t=0; differentiable scalar
Returns:
$ (K^{-\theta}+(n0^{-\theta}-K^{-\theta})e^{-r\theta t})^{-1/\theta} $

Definition at line 49 of file theta_logistic.cpp.

dvar_vector theta_logistic ( const dvector t,
const prevariable K,
const dvar_vector r,
const prevariable n0,
const prevariable theta 
)

theta logistic function; vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable scalar
rgrowth rate; differentiable vector
n0population size at t=0; differentiable scalar
Returns:
$ (K^{-\theta}+(n0^{-\theta}-K^{-\theta})e^{-r\theta t})^{-1/\theta} $

Definition at line 67 of file theta_logistic.cpp.

dvar_vector theta_logistic ( const dvector t,
const dvar_vector K,
const dvar_vector r,
const prevariable n0,
const prevariable theta 
)

theta logistic function; vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable vector
rgrowth rate; differentiable vector
n0population size at t=0; differentiable scalar
Returns:
$ (K^{-\theta}+(n0^{-\theta}-K^{-\theta})e^{-r\theta t})^{-1/\theta} $

Definition at line 84 of file theta_logistic.cpp.

dvar_vector theta_logistic ( const dvector t,
const prevariable K,
const prevariable r,
const dvar_vector n0,
const prevariable theta 
)

theta logistic function; vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable scalar
rgrowth rate; differentiable scalar
n0population size at t=0; differentiable vector
Returns:
$ (K^{-\theta}+(n0^{-\theta}-K^{-\theta})e^{-r\theta t})^{-1/\theta} $

Definition at line 103 of file theta_logistic.cpp.

dvar_vector theta_logistic ( const dvector t,
const dvar_vector K,
const prevariable r,
const dvar_vector n0,
const prevariable theta 
)

theta logistic function; vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable vector
rgrowth rate; differentiable scalar
n0population size at t=0; differentiable vector
Returns:
$ (K^{-\theta}+(n0^{-\theta}-K^{-\theta})e^{-r\theta t})^{-1/\theta} $

Definition at line 120 of file theta_logistic.cpp.

dvar_vector theta_logistic ( const dvector t,
const prevariable K,
const dvar_vector r,
const dvar_vector n0,
const prevariable theta 
)

theta logistic function; vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable scalar
rgrowth rate; differentiable vector
n0population size at t=0; differentiable vector
Returns:
$ (K^{-\theta}+(n0^{-\theta}-K^{-\theta})e^{-r\theta t})^{-1/\theta} $

Definition at line 138 of file theta_logistic.cpp.

dvar_vector theta_logistic ( const dvector t,
const dvar_vector K,
const dvar_vector r,
const dvar_vector n0,
const prevariable theta 
)

theta logistic function; vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable vector
rgrowth rate; differentiable vector
n0population size at t=0; differentiable vector
Returns:
$ (K^{-\theta}+(n0^{-\theta}-K^{-\theta})e^{-r\theta t})^{-1/\theta} $

Definition at line 155 of file theta_logistic.cpp.

df1b2variable theta_logistic ( const double &  t,
const df1b2variable K,
const df1b2variable r,
const df1b2variable n0,
const df1b2variable theta 
)

theta logistic function; random effects scalar

Parameters:
tindependent variable; data scalar
Kcarrying capacity; differentiable scalar in a random effects model
rgrowth rate; differentiable scalar in a random effects model
n0population size at t=0; differentiable scalar in a random effects model
Returns:
$ (K^{-\theta}+(n0^{-\theta}-K^{-\theta})e^{-r\theta t})^{-1/\theta} $

Definition at line 175 of file theta_logistic.cpp.

df1b2vector theta_logistic ( const dvector t,
const df1b2variable K,
const df1b2variable r,
const df1b2variable n0,
const df1b2variable theta 
)

theta logistic function; random effects vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable scalar in a random effects model
rgrowth rate; differentiable scalar in a random effects model
n0population size at t=0; differentiable scalar in a random effects model
Returns:
$ (K^{-\theta}+(n0^{-\theta}-K^{-\theta})e^{-r\theta t})^{-1/\theta} $

Definition at line 190 of file theta_logistic.cpp.

df1b2vector theta_logistic ( const dvector t,
const df1b2vector K,
const df1b2variable r,
const df1b2variable n0,
const df1b2variable theta 
)

theta logistic function; random effects vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable vector in a random effects model
rgrowth rate; differentiable scalar in a random effects model
n0population size at t=0; differentiable scalar in a random effects model
Returns:
$ (K^{-\theta}+(n0^{-\theta}-K^{-\theta})e^{-r\theta t})^{-1/\theta} $

Definition at line 205 of file theta_logistic.cpp.

df1b2vector theta_logistic ( const dvector t,
const df1b2variable K,
const df1b2vector r,
const df1b2variable n0,
const df1b2variable theta 
)

theta logistic function; random effects vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable scalar in a random effects model
rgrowth rate; differentiable vector in a random effects model
n0population size at t=0; differentiable scalar in a random effects model
Returns:
$ (K^{-\theta}+(n0^{-\theta}-K^{-\theta})e^{-r\theta t})^{-1/\theta} $

Definition at line 223 of file theta_logistic.cpp.

df1b2vector theta_logistic ( const dvector t,
const df1b2vector K,
const df1b2vector r,
const df1b2variable n0,
const df1b2variable theta 
)

theta logistic function; random effects vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable vector in a random effects model
rgrowth rate; differentiable vector in a random effects model
n0population size at t=0; differentiable scalar in a random effects model
Returns:
$ (K^{-\theta}+(n0^{-\theta}-K^{-\theta})e^{-r\theta t})^{-1/\theta} $

Definition at line 238 of file theta_logistic.cpp.

df1b2vector theta_logistic ( const dvector t,
const df1b2variable K,
const df1b2variable r,
const df1b2vector n0,
const df1b2variable theta 
)

theta logistic function; random effects vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable scalar in a random effects model
rgrowth rate; differentiable scalar in a random effects model
n0population size at t=0; differentiable vector in a random effects model
Returns:
$ (K^{-\theta}+(n0^{-\theta}-K^{-\theta})e^{-r\theta t})^{-1/\theta} $

Definition at line 258 of file theta_logistic.cpp.

df1b2vector theta_logistic ( const dvector t,
const df1b2vector K,
const df1b2variable r,
const df1b2vector n0,
const df1b2variable theta 
)

theta logistic function; random effects vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable vector in a random effects model
rgrowth rate; differentiable scalar in a random effects model
n0population size at t=0; differentiable vector in a random effects model
Returns:
$ (K^{-\theta}+(n0^{-\theta}-K^{-\theta})e^{-r\theta t})^{-1/\theta} $

Definition at line 273 of file theta_logistic.cpp.

df1b2vector theta_logistic ( const dvector t,
const df1b2variable K,
const df1b2vector r,
const df1b2vector n0,
const df1b2variable theta 
)

theta logistic function; random effects vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable scalar in a random effects model
rgrowth rate; differentiable vector in a random effects model
n0population size at t=0; differentiable vector in a random effects model
Returns:
$ (K^{-\theta}+(n0^{-\theta}-K^{-\theta})e^{-r\theta t})^{-1/\theta} $

Definition at line 291 of file theta_logistic.cpp.

df1b2vector theta_logistic ( const dvector t,
const df1b2vector K,
const df1b2vector r,
const df1b2vector n0,
const df1b2variable theta 
)

theta logistic function; random effects vectorized

Parameters:
tindependent variable; data vector
Kcarrying capacity; differentiable vector in a random effects model
rgrowth rate; differentiable vector in a random effects model
n0population size at t=0; differentiable vector in a random effects model
Returns:
$ (K^{-\theta}+(n0^{-\theta}-K^{-\theta})e^{-r\theta t})^{-1/\theta} $

Definition at line 306 of file theta_logistic.cpp.