
Package ‘TMB’
May 28, 2014

Type Package

Title General random effect model builder tool inspired by ADMB.

Version 1.0

Date 2013-09-03

Author Kasper Kristensen

Maintainer Kasper Kristensen <kaskr@imm.dtu.dk>

Description With this tool, a user should be able to quickly implement complex
random effect models through simple c++ templates. The package combines
CppAD (c++ automatic differentiation), Eigen (templated matrix-vector
library) and CHOLMOD (sparse matrix routines available from R) to obtain an
efficient implementation of the applied Laplace approximation with exact
derivatives. Key features are: Automatic sparseness detection, parallelism
through BLAS and parallel user templates.

License GPL

Depends R (>= 3.0.0),Matrix(>= 1.0-12)

LinkingTo Matrix

Collate 'asmle.R' 'examples.R' 'options.R' 'TMB.R' 'zzz.R' 'config.R' 'benchmark.R' 'gdbsource.R'
'sdreport.R'

R topics documented:
benchmark . 2
compile . 2
gdbsource . 3
MakeADFun . 4
newton . 6
openmp . 8
precompile . 8
Rinterface . 9
runExample . 9
sdreport . 10
template . 11

Index 13

1

2 compile

benchmark Benchmark parallel templates

Description

Benchmark parallel templates

Usage

benchmark(obj, n = 10, expr = NULL, cores = NULL)

Arguments

obj Object from MakeADFun

n Number of replicates to obtain reliable results.

expr Optional expression to benchmark instead of default.

cores Optional vector of cores.

Details

By default this function will perform timings of the most critical parts of an AD model, specifically

1. Objective function of evaluated template.

2. Gradient of evaluated template.

3. Sparse hessian of evaluated template.

4. Cholesky factorization of sparse hessian.

(for pure fixed effect models only the first two). Expressions to time can be overwritten by the user
(expr). A plot method is available for Parallel benchmarks.

Examples

runExample("linreg_parallel",thisR=TRUE) ## Create obj
ben <- benchmark(obj,n=100,cores=1:4)
plot(ben)
ben <- benchmark(obj,n=10,cores=1:4,expr=expression(do.call("optim",obj)))
plot(ben)

compile Compile a c++ template to DLL suitable for MakeADFun.

Description

Compile a c++ template into a shared object file. OpenMP flag is set if the template is detected to
be parallel.

gdbsource 3

Usage

compile(file, flags = "", safebounds = TRUE,
safeunload = TRUE, openmp = isParallelTemplate(file),
libtmb = TRUE, ...)

Arguments

file c++ file.

flags Character with compile flags.

safebounds Turn on preprocessor flag for bound checking?

safeunload Turn on preprocessor flag for safe DLL unloading?

openmp Turn on openmp flag? Auto detected for parallel templates.

libtmb Use precompiled TMB library if available (to speed up compilation)?

... Passed as Makeconf variables.

Details

TMB relies on R’s built in functionality to create shared libraries independent on the platform. A
template is compiled by compile("template.cpp"), which will call R’s makefile with appropriate
preprocessor flags. Compiler and compiler flags can be stored in a configuration file. In order of
precedence either via the file pointed at by R_MAKEVARS_USER or the file ~/.R/Makevars if it
exists. Additional configuration variables can be set with ... argument, which will overwrite any
previous selections.

gdbsource Source R-script through gdb to get backtrace.

Description

Source R-script through gdb to get backtrace.

Usage

gdbsource(file, interactive = FALSE)

Arguments

file Your R script

interactive Run interactive gdb session?

Details

This function is useful for debugging templates. If a script aborts e.g. due to an out-of-bound index
operation it should be fast to locate the line that caused the problem by running gdbsource(file).
Alternatively, If more detailed debugging is required, then gdbsource(file,TRUE) will provide
the full backtrace followed by an interactive gdb session where the individual frames can be in-
spected. Note that templates should be compiled without optimization and with debug information
i.e. compile(cppfile,"-O0 -g") in order to provide correct line numbers.

4 MakeADFun

Value

Object of class backtrace

MakeADFun Construct objective functions with derivatives based on a compiled
c++ template.

Description

Construct objective functions with derivatives based on the users c++ template.

Usage

MakeADFun(data, parameters, map = list(),
type = c("ADFun", "Fun", "ADGrad"), random = NULL,
random.start = expression(last.par.best[random]),
hessian = FALSE, method = "BFGS",
inner.method = "newton",
inner.control = list(maxit = 1000),
MCcontrol = list(doMC = FALSE, seed = 123, n = 100),
ADreport = FALSE, atomic = TRUE,
LaplaceNonZeroGradient = FALSE, DLL = getUserDLL(),
checkParameterOrder = TRUE, regexp = FALSE, ...)

Arguments

data List of data objects (vectors,matrices,arrays,factors,sparse matrices) required by
the user template (Order does not matter and un-used components are allowed).

parameters List of all parameter objects required by the user template (both random and
fixed effects).

map List defining how to optionally collect and fix parameters - see details.

type Character vector defining which operation stacks are generated from the users
template - see details.

random Character vector defining the random effect parameters. See also regexp.

random.start Expression defining the strategy for choosing random effect initial values as
function of previous function evaluations - see details.

hessian Calculate Hessian at optimum?

method Outer optimization method.

inner.method Inner optimization method (see function "newton")

inner.control List controlling inner optimization

MCcontrol List ontrolling importance sampler (turned off by default)

ADreport Calculate derivatives of macro ADREPORT(vector) instead of objective_function
return value?

atomic Allow tape to contain atomic functions?
LaplaceNonZeroGradient

Allow taylor expansion around non-stationary point?

MakeADFun 5

DLL Name of shared object file compiled by user.
checkParameterOrder

Optional check for correct parameter order.

regexp Match random effects by regular expressions?

...

Details

A call to MakeADFun will return an object that, based on the users DLL code (specified through
DLL), contain functions to calculate the objective function and its gradient. The object contain the
following components:

• par A default parameter.

• fn The likelihood function.

• gr The gradient function.

• report A function to report all variables reported with the REPORT() macro in the user
template.

• env Environment with access to all parts of the structure.

and is thus ready for a call to R’s optim function. Data (data) and parameters (parameters) are
directly read by the user template via the macros beginning with DATA_ and PARAMETER_. The
order of the PARAMETER_ macros defines the order of parameters in the final objective function.
There are no restrictions on the order of random parameters, fixed parameters or data in the template.

Optionally, a simple mechanism for collecting and fixing parameters from R is available through
the map argument. A map is a named list of factors with the following properties:

• names(map) is a subset of names(parameters).

• For a parameter "p" length(map$p) equals length(parameters$p).

• Parameter entries with NAs in the factor are fixed.

• Parameter entries with equal factor level are collected to a common value.

More advanced parameter mapping, such as collecting parameters between different vectors etc.,
must be implemented from the template.

Random effects are specified via the argument random: A component of the parameter list is marked
as random if its name is matched by any of the characters of the vector random (Regular expres-
sion match is performed if regexp=TRUE). If some parameters are specified as random effects,
these will be integrated out of the objective function via the Laplace approximation. In this sit-
uation all of the functions fn and gr automatically performs an optimization of random effects
for each function evaluation. This is referred to as the ’inner optimization’. Strategies for choos-
ing initial values of the inner optimization can be controlled via the argument random.start. By
default, we use expression(last.par.best[random]) where last.par.best is an internal full
parameter vector corresponding to the currently best likelihood. An alternative choice could be
expression(last.par[random]) i.e. the random effect optimum of the most recent - not nec-
essarily best - likelihood evaluation. Further control of the inner optimization can be obtained by
the argument inner.control which is a list of control parameters for the inner optimizer newton.
Depending of the inner optimization problem type the following settings are recommended:

1. Quasi-convex: smartsearch=TRUE (the default).

2. Strictly-convex: smartsearch=FALSE and maxit=20.

3. Quadratic: smartsearch=FALSE and maxit=1.

6 newton

Technically, the user template is processed several times by inserting different types as template
parameter, selected by argument type:

• "ADfun" Run through the template with AD-types and produce a stack of operations repre-
senting the objective function.

• "Fun" Run through the template with ordinary double-types.

• "ADGrad" Run through the template with nested AD-types and produce a stack of operations
representing the objective function gradient.

Each of these are represented by external pointers to c++ structures available in the environment
env.

Further objects in the environment env:

• validpar Function defining the valid parameter region (by default no restrictions). If an
invalid parameter is inserted fn immediately return NaN.

• parList Function to get the full parameter vector of random and fixed effects in a convenient
list format.

• random An index vector of random effect positions in the full parameter vector.

• last.par Full parameter of the latest likelihood evaluation.

• last.par.best Full parameter of the best likelihood evaluation.

• tracepar Trace every likelihood evaluation ?

• tracemgc Trace mgc of every gradient evaluation ?

Value

List with components (fn,gr, etc) suitable for an optim call.

newton Generalized newton optimizer.

Description

Generalized newton optimizer used for the inner optimization problem.

Usage

newton(par, fn, gr, he, trace = newtonOption("trace"),
maxit = newtonOption("maxit"),
tol = newtonOption("tol"), alpha = 1,
smartsearch = newtonOption("smartsearch"),
mgcmax = newtonOption("mgcmax"), super = TRUE,
silent = TRUE, ustep = 1, power = 0.5, u0 = 1e-04,
grad.tol = tol, step.tol = tol, tol10 = 0.001,
env = environment(), ...)

newton 7

Arguments

par Initial parameter.

fn Objective function.

gr Gradient function.

he Sparse hessian function.

trace Print tracing information?

maxit Maximum number of iterations.

tol Convergence tolerance.

alpha Newton stepsize in the fixed stepsize case.

smartsearch Turn on adaptive stepsize algorithm for non-convex problems?

mgcmax Refuse to optimize if the gradient is too steep.

super Supernodal Cholesky?

silent Be silent?

ustep Adaptive stepsize initial guess between 0 and 1.

power Parameter controlling adaptive stepsize.

u0 Parameter controlling adaptive stepsize.

grad.tol Gradient convergence tolerance.

step.tol Stepsize convergence tolerance.

tol10 Try to exit if last 10 iterations not improved more than this.

...

Details

If smartsearch=FALSE this function performs an ordinary newton optimization on the function fn
using an exact sparse hessian function. A fixed stepsize may be controlled by alpha so that the
iterations are given by:

un+1 = un − αf ′′(un)−1f ′(un)

If smartsearch=TRUE the hessian is allowed to become negative definite preventing ordinary new-
ton iterations. In this situation the newton iterations are performed on a modified objective function
defined by adding a quadratic penalty around the expansion point u0:

ft(u) = f(u) +
t

2
‖u− u0‖2

This functions hessian (f ′′(u) + tI) is positive definite for t sufficiently large. The value t is
updated at every iteration: If the hessian is positive definite t is decreased, otherwise increased.
Detailed control of the update process can be obtained with the arguments ustep, power and u0.

Value

List with solution similar to optim output.

8 precompile

openmp Control number of openmp threads.

Description

Control number of openmp threads.

Usage

openmp(n = NULL)

Arguments

n Requested number of threads, or NULL to just read the current value.

Value

Number of threads.

precompile Precompile the TMB library in order to speed up compilation of tem-
plates.

Description

Precompile the TMB library

Usage

precompile(...)

Arguments

... Passed to compile.

Details

The precompilation should only be run once, typically right after installaion of TMB. Note that
the precompilation requires write access to the TMB package folder. Two versions of the library -
with/without the openmp flag - will be generated. After this, compilation times of templates should
be reduced.

Rinterface 9

Rinterface Create minimal R-code corresponding to a cpp template.

Description

Create a skeleton of required R-code once the cpp template is ready.

Usage

Rinterface(file)

Arguments

file cpp template file.

Examples

file <- system.file("examples/simple.cpp", package = "TMB")
Rinterface(file)

runExample Run one of the test examples.

Description

Compile and run a test example (runExample() shows all available examples).

Usage

runExample(name = NULL, all = FALSE, thisR = TRUE,
clean = FALSE, exfolder = NULL, ...)

Arguments

name Character name of example.

all Run all the test examples?

thisR Run inside this R?

clean Cleanup before compile?

exfolder Alternative folder with examples.

... Passed to compile.

10 sdreport

sdreport General sdreport function.

Description

After optimization of an AD model, sdreport is used to calculate standard deviations of all model
parameters, including non linear functions of random and fixed effects parameters specified through
the ADREPORT() macro from the user template.

Usage

sdreport(obj, par.fixed = NULL, hessian.fixed = NULL,
getJointPrecision = FALSE)

Arguments

obj Object returned by MakeADFun

par.fixed Optional. Fixed effect parameter estimate (will be known to obj when an opti-
mization has been carried out).

hessian.fixed Optional. Hessian wrt. fixed effects (will be calculated from obj if missing).
getJointPrecision

Optional. Return full joint precision matrix of random and fixed effects?

Details

First, the Hessian wrt. the fixed effect parameter vector (θ) is calculated. The fixed effects covari-
ance matrix is approximated by

V (θ̂) = −∇2l(θ̂)−1

where l denotes the log likelihood function (i.e. -obj$fn).

For non-random effect models the standard delta-method is used to calculate the covariance matrix.
Let φ(θ) denote some non-linear function of θ. Then

V (φ(θ̂)) ≈ ∇φV (θ̂)∇φ′

For random effect models a generalized delta-method is used. First the joint covariance of random
and fixed effects is estimated by

V

(
û
θ̂

)
≈

(
H−1uu 0
0 0

)
+ JV (θ̂)J ′

where Huu denotes random effect block of the full joint Hessian of objenvf and J denotes the

Jacobian of
(
û(θ)
θ

)
wrt. θ. Here, the first term represents the expected conditional variance given

the fixed effects and the second term represents the variance of the conditional mean wrt. the fixed
effects. Now the delta method can be applied on a general non-linear function φ(u, θ) of random
effects u and fixed effects θ:

V (φ(û, θ̂)) ≈ ∇φV
(
û
θ̂

)
∇φ′

The full joint covariance is not returned by default, because it may require large amounts of memory.

It may be obtained by specifying getJointPrecision=TRUE, in which case V
(
û
θ̂

)−1
will be part

template 11

of the output. This matrix must be manually inverted using solve(jointPrecision) in order to
get the joint covariance matrix. Note, that the parameter order will follow the original order (i.e.
objenvpar).

Value

Object of class sdreport

Examples

runExample("linreg_parallel",thisR=TRUE) ## Fixed effect example
sdreport(obj)
runExample("rw",thisR=TRUE) ## Random effect example
rep <- sdreport(obj)
summary(rep,"random") ## Only random effects
summary(rep,"fixed",p.value=TRUE) ## Only fixed effects
summary(rep,"report") ## Only report

template Create cpp template to get started.

Description

Create a cpp template to get started.

Usage

template(file = NULL)

Arguments

file Optional name of cpp file.

Details

This function generates a c++ template with a header and include statement. Here is a brief overview
of the c++ syntax used to code the objective function.

Macros to read data and declare parameters:

Template Syntax C++ type R type
DATA_VECTOR(name) vector<Type> vector
DATA_MATRIX(name) matrix<Type> matrix
DATA_SCALAR(name) Type numeric(1)
DATA_INTEGER(name) int integer(1)
DATA_FACTOR(name) vector<int> factor
DATA_SPARSE_MATRIX(name) Eigen::SparseMatrix<Type> dgTMatrix
DATA_ARRAY(name) array<Type> array
PARAMETER_MATRIX(name) matrix<Type> matrix
PARAMETER_VECTOR(name) vector<Type> vector
PARAMETER_ARRAY(name) array<Type> array
PARAMETER(name) Type numeric(1)

12 template

Basic calculations:

Template Syntax Explanation
REPORT(x) Report x back to R
ADREPORT(x) Report x back to R with derivatives
vector<Type> v(n1); R equivalent of v=numeric(n1)
matrix<Type> m(n1,n2); R equivalent of m=matrix(0,n1,n2)
array<Type> a(n1,n2,n3); R equivalent of a=array(0,c(n3,n2,n1))
v+v,v-v,v*v,v/v Pointwise binary operations
m*v Matrix-vector multiply
a(i) R equivalent of a[„i]
a(i)(j) R equivalent of a[,j,i]
a(i)(j)[k] R equivalent of a[k,j,i]
exp(v) Pointwise math
m(i,j) R equivalent of m[i,j]
v.sum() R equivalent of sum(v)
m.transpose() R equivalent of t(m)

Some distributions are avaliable as c++ templates with syntax close to R’s distributions:

Function header Distribution
dnbinom(x,mu,var,int give_log=0) Negative binomial with mean and variance
dpois(x,lambda,int give_log=0) Poisson distribution as in R
dlgamma(y,shape,scale,int give_log=0) log-gamma distribution
dnorm(x,mean,sd,int give_log=0) Normal distribution as in R

Examples

template()

Index

benchmark, 2

compile, 2

gdbsource, 3

MakeADFun, 4

newton, 6

openmp, 8

precompile, 8

Rinterface, 9
runExample, 9

sdreport, 10

template, 11

13

	benchmark
	compile
	gdbsource
	MakeADFun
	newton
	openmp
	precompile
	Rinterface
	runExample
	sdreport
	template
	Index

