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Chapter 1

Introduction

What is autodif?

autodif is an array language extension to C++ which allows the user to automatically calcu-
late the partial derivatives of a function of many independent variables by simply redeclaring
the usual C floating point types doubles and arrays of doubles to be the corresponding au-
todif type: dvariable, and dvar_vector. The user can write the code for the function
using any valid C++ syntax. autodif does not impose any restrictions on allowable code con-
structions. Using autodif, the programmer can manipulate vectors and matrices as single
objects in complicated mathematical calculations, and at the same time, obtain derivatives
of the resulting function with respect to the independent variables.

When calculating derivatives, there is no restriction on calling user-supplied functions,
which may themselves call other functions—so long as the types have been redefined to be
the corresponding autodif types. Since C++ is upwardly compatible with ansi C, existing
numerical routines written in C can be easily modified to use autodif.

Who should use autodif?

Anyone who would like to have the derivatives of a complicated function computed automat-
ically without any additional programming effort will find autodif useful. It is particularly
useful for optimization problems involving a differentiable function of many independent vari-
ables. Such problems occur, for example, in nonlinear statistical modeling, i.e., in nonlinear
parameter estimation, in sensitivity analysis, and in finding roots of systems of equations.

Why is automatic differentiation better than estimating the derivatives by finite
differences?

There are two reasons why the autodif method is better than finite differences for calcu-
lating partial derivatives.
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1. With autodif, the derivatives are calculated to the limit of machine accuracy, that
is, to the same degree of accuracy as the function itself. The derivatives are obtained
as accurately as they would be if an analytical expression for the derivatives were
evaluated on the computer. With finite differences, the accuracy of the derivative cal-
culations seldom approaches that of the limit of the machine accuracy for calculating
the derivatives. Consequently, optimization schemes based on automatic differentia-
tion tend to be more stable and perform better than those that use finite difference
approximations.

2. To obtain estimates of the partial derivatives by finite difference approximations, the
amount of calculation necessary is proportional to the number of independent variables
times the amount of time needed to calculate the function itself. With autodif, the
amount of calculation is less than 5 times the amount of calculation needed to calculate
the function itself [2]. In particular, the computing time does not depend on the number
of independent variables. This makes autodif particularly attractive for calculating
derivatives for functions with many independent variables.

Is it necessary to learn C++ before one can use autodif?

Any experienced C programmer can learn to use autodif in a few hours. While it is
necessary to have a C++ compiler to use autodif, only a small number of extra concepts
besides those used in the C language need to be learned. This is due to the fact that C++ is
essentially a superset of C, so valid ansi-compliant C code needs only a very small amount
of modification to be converted to valid C++ code.

We feel that the best way to get a feel for how autodif is used is to study a series of
examples. These examples have been chosen to illustrate the use of autodif on problems
in different fields from engineering to statistical analysis.

How does automatic differentiation work?

Every computer program for calculating a function value, no matter how complicated, can
be broken down into a series of binary and unary mathematical operations. Automatic
differentiation is simply the chain rule from elementary calculus applied to this series. The
following simple example illustrates the chain rule:

u = x2 + y2

v = x+ 3y (1.1)
f = sin(u) + exp(v)

We want to calculate the derivatives of the function f with respect to the variables x
and y. By the chain rule,

∂f

∂x
=
∂f

∂u

∂u

∂x
+
∂f

∂v

∂v

∂x

∂f

∂y
=
∂f

∂u

∂u

∂y
+
∂f

∂v

∂v

∂y
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Now

∂f

∂u
= cos(u)

∂f

∂v
= exp(v) (1.2)

∂u

∂x
= 2x

∂v

∂x
= 1

∂u

∂y
= 2y

∂v

∂y
= 3 (1.3)

such that

∂f

∂x
= cos(u) ∗ 2x+ exp(v) ∗ 1

∂f

∂y
= cos(u) ∗ 2y + exp(v) ∗ 3

That is really all there is to it! Your program is broken down into a series of simple operations
like these so that the derivatives can be calculated. The important point is that no matter
how complicated the mathematical expressions are, they can be thought of as consisting of
a long series of binary and unary operations.

What is adjoint (precompiled) derivative code and why is it so important?

While the reverse mode of automatic differentiation is extremely efficient in terms of the
number of calculations required to compute derivatives, the method requires a large amount
of temporary storage. Each arithmetic operation used to calculate the original function
generates 28–30 bytes of temporary storage. Consider the fact that inverting a 100-by-100
matrix requires 106 operations. This would generate 28–30 megabytes of temporary storage
requirements. Clearly, it would be impractical to carry out large calculations under these
conditions.

The use of precompiled derivative code combines the best of two worlds, so to speak.
The small number of arithmetic operations required by the reverse mode for calculating
derivatives is retained while, at the same time, the amount of temporary storage required is
greatly reduced. The amount of storage required for inverting a 100-by-100 matrix inverse is
reduced to about 500K. Even better, the amount of temporary storage requirement generated
by adding two matrices is about 32 bytes, no matter how large the matrices are.

Precompiled derivative code means that the actual derivative calculations are written
in C++ functions. Following object oriented design considerations, the precompiled code
is completely “encapsulated” so that it is invisible to the user. This means that it makes
no difference to the user whether or not a particular function has a precompiled derivative
code component written for it. At the user level, everything looks the same—except that
performance is greatly enhanced. The use of precompiled derivative code produces the
ultimate in reuseable code. For example, writing good code for the derivative of the inverse
of a matrix is not a trivial procedure. However, once it has been written, any user of autodif
can take advantage of it simply by taking the inverse of a matrix object with code like

bbM1=inv(M); // M1 and M are dvar_matrix objects
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autodif combines array and matrix classes with the use of precompiled derivative code
for common array and matrix calculations and assignments to produce a superior environ-
ment for efficient derivative calculations.

1.1 A simple example of a derivative calculation

While autodif has been supplied with all the computational power described above, it has
been designed so that, at the user level, it appears like enhanced C code, or perhaps as
enhanced C code with an additional array language. Before illustrating some of autodif’s
array language facilities, we will begin with a simple C code example.

The following C code for the function fcomp calculates the sum of squares

n−1∑
i=0

(xi − 1)2

This code has been written in C without using any C++ or autodif extensions, to show how
C code can be modified to use autodif for calculating derivatives.

#include <math.h>

double fcomp(int n,double * x)
{
double z;
double tmp;
int i;
z=0;
for (i=0;i<n;i++)
{
tmp=x[i]-1;
z=z+tmp*tmp;

}
return(z);

}

fcomp computes the sum of squares of n double precision floating point numbers, which are
contained in an array of length n pointed to by x. The expression x[i] refers to the ith

element of the array. (Note that the default construction for C begins indexing an array
with zero.)
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1.2 Modifying fcomp to use autodif

The arithmetic in the function fcomp is carried out using objects of type double, that is,
eight byte floating point numbers. In order to calculate derivatives at the same time as the
function is being calculated, the class double is replaced with a new autodif class, the
dvariable. An object of type dvariable “appears” to the user to be an object of type
double in that it can be used in arithmetic and mathematical expressions, and it has a
numerical value that can be displayed. The difference between an object of type double
and an object of type dvariable is that when arithmetic is done using a dvariable object,
information necessary for the calculation of derivatives is automatically generated as well.

In addition to objects of type dvariable, we shall need a class of “vector” object,
corresponding to x, that generates derivative information. In autodif, this class is the
dvar_vector class.

The following listing is the fcomp function modified to use automatic differentiation.

// file: fcomp_s.cpp

#include <fvar.hpp>

double fcomp(int n, dvar_vector x)
{
dvariable z;
dvariable tmp;
int i;
z=0;
for (i=1;i<=n;i++)
{
tmp=x[i]-1;
z=z+tmp*tmp;

}
return(value(z));

}

There are five changes.

1. The line #include <fvar.hpp> has been included. The file fvar.hpp contains infor-
mation about autodif for the C++ compiler.

2. The array of variables x has been redefined to be of type dvar_vector. This autodif
type is like an array of doubles for which derivative information is collected. Besides
providing for the calculation of derivatives, the use of the dvar_vector class for x
provides an additional improvement. With the original C code, there was no way
of determining in the subroutine fcomp whether or not enough memory had actually
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been allocated to the array x. autodif provides optional index bounds checking for all
container classes, such as dvar_arrays. This greatly speeds up program development.

3. The variables z and tmp have been declared to be of type dvariable. The dvariable
type is the fundamental type for automatic differentiation. It corresponds to the C
floating point type double.

4. The function value has been included in the line return(value(z)); The function
value() returns the numerical part of an dvariable. This is necessary to convert
the dvariable to a double so that the value can be returned and used in subsequent
calculations (such as in a function minimizer) without generating any more derivative
calculations.

5. The range of the index of the for loop has been changed to begin at 1 and include n.
While this change is not strictly necessary for this example, autodif allows the user
to declare arrays that have arbitrary valid index ranges. This facility often contributes
to the production of simpler looking code.

1.3 Interfacing with the rest of the program
The form of the interface of the function fcomp with the rest of the program will depend on
the user’s application. This section illustrates two applications. The first example shows how
to simply calculate the derivatives so they can be used for any other purpose whatsoever.
The second example shows how to invoke a function minimizer, supplied with autodif,
to find the minimum of the function fcomp. In any event, it is necessary to identify the
independent variables for autodif. (These are the variables for which the partial derivatives
are calculated.) The independent variables are identified by declaring them to be of type
independent_variables. The declaration independent_variables x(1,nvar) creates an
array of 20 independent variables and identifies the independent variables for autodif. An
object of type gradient_structure must be declared and remain in scope until all the
derivative calculations have been finished.

#include <math.h>
#include <fvar.hpp>

double fcomp(dvar_vector); // Function prototype declaration
void main()
{
double f;
int i;
int nvar=20;
independent_variables x(1,nvar); // Identify the independent variables
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dvector g(1,nvar); // Holds the vector of partial derivatives (gradient)
gradient_structure gs; // Must declare this structure to manage

// derivative calculations
f=fcomp(nvar,x);
gradcalc(nvar,g); // The derivatives are calculated
cout <<" The gradient vector is\n"<<g<<"\n"; // Print out the derivatives

} // on the screen

Notice that although x has been declared to be an object of type independent_variables
in the main routine, it is declared to be an object of type dvar_vector in fcomp. While
this might appear to be an error, it is actually an important part of the interface. It is
necessary to identify both what the independent variables are and when one should begin
to collect derivative information for calculations involving them. When the vector x is
passed to the function fcomp, the compiler will invoke a constructor to convert the type
independent_variables to the type dvar_vector. At this time, the steps necessary for
identifying the independent variables and initializing the collection of information needed
for calculating the derivatives are carried out. With the Borland C++ compiler, a warning
message

Temporary used for type xxx in function yyy

is printed out, notifying the user that a constructor has been invoked to perform the necessary
conversion. Such a message is usually benign and we tend to ignore them, since we have
tried to design autodif so that unwanted type conversions do not occur. However, it may
indicate that some unintended conversion has taken place. This is one of the subtler pitfalls
of C++ programming. If you want to avoid such warning messages, it is possible to explicitly
“cast” the object x to the desired type as

f=fcomp(nvar,dvar_vector(x));

The next example shows how the above code is modified to invoke the function minimizer
routine. The function to be minimized and the function minimizer are embedded in a loop
so that it is not necessary for the user’s function to call the function minimizer or for the
function minimizer to call the user’s function. This eliminates the need to communicate with
either routine by passing global variables. Since the code that sets up the loop is independent
of the user’s function to be minimized, we have defined two macros, BEGIN_MINIMIZATION
and END_MINIMIZATION, which will expand to produce the loop structure. The first macro,
BEGIN_MINIMIZATION takes five arguments: the number of variables in the function to be
minimized, the name of the vector of independent variables, the name of the dependent
variable, the name of the vector of partial derivatives, and the name of the fmm control
structure. It is the user’s responsibility to declare these five objects. The second macro,
END_MINIMIZATION takes two arguments: the number of variables and the name of the
vector of partial derivatives.

//file: simple.cpp
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#include <fvar.hpp>

double fcomp(int, dvar_vector); // Function prototype declaration
#ifdef __BCPLUSPLUS__
extern unsigned _stklen = 20000;

#endif
#ifdef __ZTC__
long _stack = 20000;

#endif
void main()
{
int nvar=20; // This is the number of independent variables
independent_variables x(1,nvar); // these are the independent variables
double f; // This is the dependent variable
dvector g(1,nvar); // Holds the vector of partial derivatives (gradient)
fmm fmc(nvar); // Create structure to manage minimization
BEGIN_MINIMIZATION(nvar,f,x,g,fmc) // Macro to set up beginning of
// minimization loop
f=fcomp(nvar,x);
END_MINIMIZATION(nvar,g) // Macro to set up end of minimization loop
cout << " The minimizing values are\n" << x << "\n"; //Print out answer

}

It is not necessary to use the macros. They have simply been provided for convenience.
If you prefer, their expansion can be written out, as in the following example:

#include <math.h>
#include <fvar.hpp>

double fcomp(dvar_vector); // Function prototype declaration
void main()
{
int nvar=20; // This is the number of independent variables
independent_variables x(1,nvar); // these are the independent variables
double f; // This is the dependent variable
dvector g(1,nvar); // Holds the vector of partial derivatives (gradient)
fmm fmc(nvar); // Create structure to manage minimization
// Expansion of BEGIN_MINIMIZATION(nvar,x,f,g,fmc) macro
gradient_structure gs;
while (fmc.ireturn >= 0) // Begin loop for minimization
{
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fmc.fmin(f,x,g); // Calls the minimization routine
if (fmc.ireturn > 0) // Loop for evaluating the function and
{ // derivatives
// End of the Expansion of BEGIN_MINIMIZATION macro
f=fcomp(nvar,x);

// Expansion of END_MINIMIZATION(nvar,g) macro
gradcalc(nvar,g);

}
}
// End of the Expansion of END_MINIMIZATION macro
cout << " The minimizing values are\n" << x << "\n"; // Print out answer

}

The minimization routine is controlled by the object fmc of type fmm. Different aspects
of the minimization—such as the maximum number of function evaluations before stopping,
convergence criteria, and printing options—can be adjusted by the user through this object.
See Chapter 10, on the function minimizers, for more details. The flow through the loops is
controlled by the integer fmc.ireturn.

If you wish to use the conjugate gradient function minimizer instead of the quasi-Newton
function minimizer, you should declare the object fmc to be of type fmmc rather than type
fmm. Nothing else needs to be changed.

1.4 Using autodif’s built in
vector and matrix calculations

An important feature of C++ is the ability to overload of arithmetic operations, i.e., extending
their definition to user-defined types. For example, the plus operation (+) can be extended
to user-defined string objects, so if string1 and string2 are two string objects, then

string1 + string2

produces a string object that contains the concatenation of string1 and string2. autodif
uses this feature to extend the operations of addition, subtraction, multiplication, and divi-
sion to various combinations of matrices, vectors, and numbers. As a result, the matrices and
vectors can be employed as objects in complex mathematical calculations while obtaining
derivatives. This greatly simplifies and speeds up code development. Addition and multipli-
cation of vectors and matrices appear in many engineering and statistical applications.

This example introduces two new types: the dvector and the dmatrix. These are the
constant analogues of the dvar_vector and dvar_matrix types. They are “safe array” ob-
jects that contain their own size information, and for which optional array bounds checking
is provided. The memory for all these objects is managed by autodif in a fashion that is
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transparent to the user. autodif can combine these constant and variable objects automat-
ically so, for example, if A is a dmatrix and M is a dvar_matrix, the expression A*M in the
user code will produce an dvar_matrix that is the product of A and M. At the same time,
the array bounds on A and M will be checked to ensure that the operation is legal for these
two objects.

To illustrate these vector and matrix operations, we have taken the following example
from [1]. The use of a cubic equation of state yields the Hemholtz energy of a mixed fluid of
unit volume at the absolute temperature T as

f(x) = RT
n∑
i=1

xi log

(
xi

1− bTx

)
− xTAx√

8bTx
log

(
1 +

(
1 +
√

2
)
bTx

1 +
(
1−
√

2
)
bTx

)
where R is the universal gas constant and

0 ≤ x, b ∈ Rn A = AT ∈ Rn×n

During the simulation of an oil reservoir, this function and its derivatives must be calculated
at thousands of points in space and time.

In this example, there are two new applications of the overloaded multiplication operator
(*). bTx denotes the dot product of the n-dimensional vector b with the n-dimensional
vector x, Ax denotes the multiplication of the n-dimensional vector x by the n×n matrix A,
and xTAx is the result of the dot product of the vector x with the vector Ax. Here is the
code for the function that calculates the Hemholtz energy using the overloaded operators.

//file: hem_func.cpp

#include <fvar.hpp>

void hemholtz_energy(int n, dmatrix A, dvector b, dvar_vector x, double& f)
{
double R=.00005;
double T=290;
double root2=pow(2.,.5);
dvariable btx = b*x;
dvariable log_one_minus_btx = log(1-btx);
dvariable z = R * T * ( x * (log(x)-log_one_minus_btx) );
z -= (x * A * x)/(2*root2*btx) * log((1+(1+root2)*btx)/(1+(1-root2)*btx));
f=value(z);

}

All the vector and matrix multiplications are carried out using the overloaded operators
*, +, and -, which enable the code to be developed extremely quickly. Notice that multipli-
cation (using *) can be carried out for any combination of dvector, dmatrix, dvar_vector,
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and dvar_matrix—so long as the operation makes sense mathematically. autodif can com-
bine the constant types double, dmatrix, and dvector with the variable types dvariable,
dvar_vector, and dvar_matrix in a manner transparent to the user.

Here is the code that calls the function hemholtz_energy.

//file: hemholtz.cpp

#include <fvar.hpp>

void hemholtz_(int n, dmatrix A, dvector b, dvar_vector x, double& f);
#ifdef __BCPLUSPLUS__
extern unsigned _stklen = 20000;

#endif
#ifdef __ZTC__
long _stack = 20000;

#endif
void main()
{
int n=30;
double f;
dvector g(1,n); // this is the n dimensional gradient vector
dvector b(1,n); // define an n dimensional vector b
dmatrix A(1,n,1,n); // define an n by n matrix A
independent_variables x(1,n); // identify the independent variables
// make up some values for the parameters
// we don’t know what reasonable values are, but it doesn’t
// matter for illustration of the method
for (int i=1; i<=n; i++)
{
b[i]=(n/2.-i)/(n*n); // This could be done using the fill routines
x[i]=(1.+i)/(n*n);

for (int j=1; j<=n; j++)
{
A[i][j]=i*j;

}
}
{
gradient_structure gs; // An object of type gradient structure must

// be declared
hemholtz_(n,A,b,x,f);// calculate the Hemholtz
gradcalc(n,g); // The gradient (partial derivatives) is
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// calculated and put in the dvector g
cout << "The gradient is:\n";
cout << g << "\n";

}
}

1.5 The log-likelihood function for a
multivariate normal distribution

As a further example of how to use autodif’s vector and matrix calculations, consider
the problem of estimating the parameters for a multivariate normal model when the means
and covariance matrix depend on a vector of common parameters Θ. Let Y be a vector of
observations (y1, y2, . . . , yn) that satisfies the relationship

Y = A(Θ)X + ε

where X is a vector (x1, x2, . . . , xm) of controls, A(Θ) is a n × m matrix depending on
a parameter vector Θ = (θ1, . . . , θp), and ε = (ε1, ε2, . . . , εn) is a random vector with a
multivariate normal distribution, with mean vector 0 and covariance matrix Σ(Θ).

The log-likelihood function for the parameters Θ is given by

−0.5 ln
(
det
(
Σ(Θ)

))
− 0.5

(
Y − A(Θ)X

)T
Σ(Θ)−1

(
Y − A(Θ)X

)
The maximum likelihood estimates for the parameters are found by maximizing the log-
likelihood function with respect to Θ. This is a nonlinear optimization problem. The best
methods for solving such a problem require the derivatives of the log-likelihood function with
respect to the parameter vector Θ. Using autodif’s vector and matrix classes, the code
for calculating the log-likelihood function and obtaining the derivatives can be written as
follows. (Actually, there are even more efficient methods of coding these calculations with
autodif.)

dvariable log_likelihood(dvector x,dvar_vector Y,dvar_matrix Sigma,
dvar_matrix A)
// It is assumed that Sigma and A have already been calculated by
// other routines in terms of the parameters Theta
{
dvariable f;
dvar_vector diff=Y-A*x;
f=-0.5*log(det(Sigma))-.5*diff*inv(Sigma)*diff;
return f;

}
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When this code is executed, the information necessary for calculating the derivatives
is automatically generated without further intervention by the user. In addition, optional
array bounds checking is provided to ensure that all vector and matrix objects have the right
dimensions for the operations performed.

What are ragged arrays?

Traditional programming languages often used for numerically intensive applications—such
as fortran—only support “flat” data structures such as matrices. The natural data struc-
tures for many applications simply do not come in this simple form. autodif has extended
these simple forms to ragged matrices and ragged 3-dimensional arrays. A ragged matrix is
a 2-dimensional array where the rows of the array can contain a different number of elements
and have different valid index ranges. A ragged 3-dimensional array is made up of matrices
of different sizes, and these matrices can themselves be ragged matrices.

Such ragged objects can be used to create many useful data structures. For example, the
“weights” in a feed-forward neural network can be best described by a ragged 3-dimensional
array. This can be used to provide an extremely compact description of the neural network.
See Chapter 15, on neural networks, for more details.

Since C++ and autodif are extensible, there is in principle no limit to the complexity of
the data structures that can be developed. This means that you will never hit a “dead end”
when developing an application.
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Chapter 2

Getting Started

2.1 System requirements: PC implementations

autodif is designed to operate on 80286, 80386, and 80486-based microcomputers with
a full 640 Kb main memory running under the ms-dos operating system version 3.2 or
higher. A hard disk is not required. However, autodif may generate several Mb of gradient
information to be stored on an external device. A hard disk and a ram disk are highly
recommended for greatest speed. The autodif libraries have been compiled with either in-
line code for a numeric coprocessor or with code to emulate a numeric coprocessor. A numeric
coprocessor is also highly recommended for greatest speed. The optimum configuration
would include a numeric coprocessor, plus a hard disk and ram disk with at least 2 Mb
free memory, for storing the temporary files created by autodif. (Large applications may
require even more disk memory.) autodif appears to be compatible with most popular
extended memory managers and multitasking systems.

The autodif system consists of a header file fvar.hpp and two or more libraries. There
is a safe library, which provides bounds checking and initialization of arrays. This library
should be used for code development. In addition, there is an optimized library for faster
execution of production programs. Check the read.me file on your autodif distribution
disk for the names and number of libraries supplied with your version of autodif.

2.2 System requirements: other implementations

autodif has been ported to a number of other platforms. The necessary information for
each specific platform should be contained in a read.me file.
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2.3 Installation

The simplest way to install the autodif system is to place the header file in the directory
where your compiler normally searches for header files, and the libraries in the directory
where your linker normally searches for libraries. If you choose this option, there is no need
to specify additional paths for the compiler and linker to search for header files and libraries.
Alternatively, you may wish to install the autodif system in its own directory. In this case,
you will need to tell the compiler and linker where to look for the header file and libraries.

An installation program is included on the distribution disk. This program is invoked by
typing a:install at the dos prompt (assuming the distribution disk is in drive a:). You
will then be asked for the drive of the source disk (in this case, a:) and the drive where
you want to install autodif. Next, you will be asked for the directories in which to install
the autodif header file, libraries, and examples. If your C++ compiler is located in c:\cc,
you might want to specify c: as the destination drive and \cc\include and \cc\lib as the
directories into which to install the include file and library files, respectively. If you press
Enter for any of these directories, the corresponding files will be installed in a directory
called AUTODIF on the destination drive.

Be sure to read the read.me file for last minute changes and compiler-specific information.

2.4 Setting up the Borland compilers for autodif

To compile autodif applications with the integrated development environment (ide), the
following options must be selected within ide:

• Select Options Compiler Code Generation. Choose Large memory model. (Optional:
select Pre-compiled headers if you wish to speed up compilation.) Select More for Ad-
vanced Code generation. Select 80287 to generate direct 80287 inline code orEmulation
to use numeric coprocessor emulation. (Optional: Select Debug info in objs if you
intend to use the debugger.)

• (Optional: If you intend to generate an overlay executable, select Options Compiler
Entry/Exit Code dos overlay.)

• SelectOptionsDirectories. If you have not stored your autodif header file and library
files in the default directories, enter under Include Directories the path where you have
stored the autodif header file (fvar.hpp), and under Library Directories the path
where you have stored the autodif libraries.

• Select Project Open to create a project file. Include your source files and the autodif
library that you wish to use.
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To compile autodif applications using a makefile, the bcc or bccx command-line com-
pilers and tlink or tlinkx linkers must be used.

You should invoke the following compiler and linker options (see the file makefile sup-
plied with the examples):

-I followed by the path of your autodif include file.

-ml to specify the large memory model.

-L followed by the path of your autodif libraries.

-c to suppress linking after compilation.

-v if you want to use the Borland debugger.

-f287 to use inline 80287 instructions.

You should invoke the /c and /v linker options if you are using debugging.
The following files must be linked in the following order (see the file makefile supplied

with the examples):

1. c0l.obj startup module for the large memory model.

2. Your source code .obj files.

3. graphics.lib, if you have a graphic application.

4. ado7.lib or ade.lib.

5. fp87.lib for the inline floating-point library or emu.lib for the emulation library.

6. mathl.lib, the math library for the large memory model.

7. cl.lib, the run-time library for the large memory model.

2.5 Setting up the Zortech compilers for autodif

To compile autodif applications with the integrated development environment ide), the
following options must be selected within ide:

• Select Compile Compile Options. Select Memory Models Large to select the large
memory model. Select Object Code Inline 8087 to generate direct inline 8087 code.

• Append the directories where you have stored the autodif header file and the au-
todif libraries to the environment strings INCLUDE and LIB, as discussed in the com-
piler documentation.
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You should invoke the following compiler and linker options (see the file makefile sup-
plied with the examples):

-I followed by the path of your autodif include file.

-ml to specify the large memory model.

-c to suppress linking after compilation.

-g if you want to use the Zortech debugger.

-f if you want to generate in-line 8087 code.

2.6 Examples
Many of the examples in this manual are included on the distribution as a “self-expanding”
archive program examples.exe. When this program is executed, it expands into several files.
The installation program will install the examples in the directory you specify. A makefile
is included to simplify compilation of the examples. Read the file examples.txt for a more
complete description of the examples.
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Chapter 3

The autodif Classes

The autodif floating point container classes have been designed to facilitate the calcu-
lation of derivatives. As in differential calculus, they reflect the main dichotomy between
constant objects for which no derivative calculations are required, and variable objects for
which derivative information is generated. Both constant and variable objects can be further
classified either as single objects (a number), or 1-dimensional arrays, 2-dimensional arrays,
and so on. The constant and variable versions of each array type (container class) have
been designed to appear as similar as possible, so that identical code can be written for
calculations involving either constant or variable objects. See Table 3.1.

Constant Type Variable Type

Single element double, float dvariable

1-dimensional array dvector dvar_vector

2-dimensional array dmatrix dvar_matrix

3-dimensional array d3array dvar3_array

Table 3.1

autodif also has 1- and 2-dimensional container classes for integers. See Table 3.2.

Single element int, long int

1-dimensional array ivector, lvector

2-dimensional array imatrix, lmatrix

Table 3.2
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The ivector and lvector classes are arrays of integers of type int and long int. The
imatrix and lmatrix classes are 2-dimensional arrays of integers of type int and long int.

3.1 The dvariable class
Objects of the dvariable class are like numbers (variables). When they are used in cal-
culations, derivative information is generated. The value of a dvariable is an object of
type double. All the standard C arithmetic and logical functions have been defined for type
dvariable. A dvariable z is created by this declaration:

dvariable z;

Since the dvariable class is designed to appear to the user like a double, it is not
necessary to discuss many of the operations that can be performed. They appear to be
simply the same as those performed on an object of type double. There is, however, an
important difference between the behavior of a dvariable and that of a double under a
copy operation. A copy occurs, for example, when an object is passed as an argument to a
function (so long as the function has not been declared to take a reference). Suppose that
the function func has been declared

void func(dvariable)

so that func is a function that takes one argument of type dvariable, and a portion of the
user’s code looks like

dvariable v;
// ...
func(v);

When the function func(v) is called, the copy initializer constructor will be called first,
in order to construct a copy of v and place that on the stack before passing control to func.
For previous versions of autodif (before Version 1.05), the copy initializer performed a
shallow copy—that is it passed a pointer to the component of the dvariable containing
the double. As a result, the dvariable in the function func and the dvariable v in the
calling routine both point to the same double, so changes to the value of the dvariable in
func will affect v even though v was passed by value. To get better compatibility with the
behavior of C code (and the behavior of a double) for Version 1.05 or later, the dvariable
copy initializer constructor has been modified so that it produces a distinct copy. This could
cause a problem for old autodif code. If a dvariable has been passed by value to a function
and its value modified in the body of the function, it used to be the case that the value of
the dvariable in the calling function would be changed as well. This is no longer the case.
Care must be taken to modify old code where necessary.

Questions about distinct copies and the form of the copy initializer also arise with con-
tainer classes, such as the autodif vector and matrix classes. This is discussed below for
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the dvar_vector class.
There is one other operation on dvariables that has no counterpart for doubles: the

value function:
double value(dvariable&);

This function returns a double, which is the value of the dvariable. The main use of this
function is to pass to some other part of the user’s program the value of a some computation
for which derivative information has been calculated. That way, the value can be used
without creating a derivative calculation associated either with the passing of the value or
its subsequent use in other parts of the program. It is not necessary to use values for
stream output of dvariables, because the stream operators << and >> have been overloaded
to accept these objects. The value function should be used sparingly. In particular, it must
not be used in the middle of calculations for which the derivatives are desired. The following
example will produce an error:
dvariable x,y,z;
double a;
// ... This code is incorrect
y=x*x;
a=value(y);
cout << " y = " << a << "\n";
z=sin(a); // This is where an error is introduced into the derivatives
cout << " z = " << z << "\n"; This will print out the value of z

The following correct version of the code will produce exactly the same output and the
derivative calculations will be correct:
dvariable x,y,z;
double a;
// ... This code is correct
y=x*x;
cout << " y = " << y << "\n";
z=sin(y); // Use y instead of a at this point
cout << " z = " << z << "\n"; This will print out the value of z

It is possible to create an array u of 10 dvariables by using the declaration
dvariable u[10]; // creates an array of 10 dvariables indexed from 0..9

However, this is not the recommended construction. Instead, the dvar_vector class
should be used as in the declaration
dvar\_vector u(0,9); // creates a dvar_vector of size 10 indexed from 0..9

This construction generates more efficient code and produces a “safe” object with optional
bounds checking. The dvariable u[10] construction may be useful for converting pre-
existing C code where the declaration double or float is modified to dvariable.
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There is at present no autodif type that corresponds to the C type float. All autodif
variable types contain a double.

3.2 The dvector and dvar_vector classes

Since the dvector and dvar_vector classes are intended to appear identical to the user
(with the exception that derivative information is generated for the dvar_vector class), we
shall discuss the use of these classes simultaneously.

The dvar_vector class appears to the user as a vector (array) of objects of type dvariable.
Bounds checking for array and matrix objects can be implemented—or not—by linking
the user’s program with the appropriate autodif library. The index for a dvector or a
dvar_vector is of type int (a signed integer), so permissible array bounds are −32, 768
to 32, 767 for 16-bit dos versions, where an object of type int occupies two bytes. The
maximum number of elements that can be contained in a dvar_vector is 8191 in 16-bit dos
versions of autodif.

3.3 Creating dvectors and dvar_vectors

Several declarations can be used to create a dvector or dvar_vector object:

dvector v(1,n); // Creates a dvector with array bounds 1..n
dvector v=w; // Creates a dvector and initializes it with w
dvector w("{1.2,4,-5.23e-1}"); // Creates a dvector with array bounds 1..3

// and initializes it with 1.2, 4, -5.23e-1.
dvector w("mystuff.dat"); //Creates a dvector whose contents are

// read in from the file mystuff.dat. The data in
// mystuff.dat must be invalid numeric format

The code

dvector v=w;

creates a dvector v by using the “copy initializer” dvector(dvector&) constructor. This
constructor performs a shallow copy, so after this line of code is executed, v and w will
both point to the same area of memory where the array is contained. The same type
of constructor is invoked when a dvector or dvar_vector object is passed by value to a
function. For example, suppose that a function users_function has been defined where the
function prototype is

void users_function(dvar_vector v);

and that the following statement appears somewhere in the user’s code:
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dvar_vector w(1,n);
. . .
users_function(w);
. . .

To pass the dvar_vector w to users_function, a copy of w is made and put on the stack.
The copy initializer constructor is called by the compiler to do this. The copy initializer uses
a “shallow” copy to create the copy of w, which is passed to the function.

A dvector contains a pointer that points to the area of memory where the elements of
the dvector are contained. With a shallow copy, the value of this pointer is simply passed
to the new copy of the dvector w. As a result, both w in the calling routine and the copy of
w in the function users_function point to the same area of memory. So, changes made to
this dvector in users_function will change the values of the corresponding entries of w in
the calling routine, even though the dvector was passed by value. This can create a problem
if the user wants to operate on the dvector in users_function without changing the value
of w in the calling routine.

For ordinary C language objects, changes within a function to an argument passed by
value to the function do not affect the object passed. This is not the case for the autodif
container classes dvariable, dvector, dvar_vector, dmatrix, or dvar_matrix, or higher-
dimensional arrays. If you wish to pass a “copy” of an object to a function such that the
original object is not affected by changes to the passed object, you must explicitly make a
distinct copy of the object by using the assignment operator (=), as in this example.

dvar_vector v(1,n); // Want to pass a copy of v to the function func
dvar_vector w(1,n); // This will be the distinct copy of v
w=v; // This creates the distinct copy
users_function(w); // Can now call the function

The user must avoid the simpler C++ construction of declaring an initialized object. Such
a declaration will cause the copy initializer to be invoked, so a shallow copy will be performed.

dvar_vector v(1,n);
dvar_vector w=v; // This uses the copy initializer so that w is

// a shallow copy of v
users_function(w); // Changes to w in the function will cause changes

// in v

It is possible to create a dvector by explicitly naming the data it will contain:

dvector w("{12,24,56 78 91.4 23.455e+2}");

The data must be enclosed in double quotes and begin and end with braces ({}). The
numbers must be in valid numeric format and be separated by blanks or commas. It is also
possible to create a dvector using the contents of a file. The declaration

dvector w("mystuff.dat");
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will create a dvector w that contains the contents of the file mystuff.dat. It is not necessary
to know how many numbers are contained in the file to use this declaration. An error message
will be generated if the file does not exist, the file is empty, or there is non-numeric data in
it. The data in the file must be separated by spaces. This constructor will create a dvector
whose minimum valid index is 1.

It is also possible to create a dvector or a dvar_vector by reading in a column of data
from a file. Suppose the file “work.prn” contains the data

Monday 25.12 -41 433.12 10.11 23
Tuesday 34.21 356 23 23.1 5
Wednesday 10 3.13e-4 43.11 3.23 4
Thursday 12.1 53.13 453.1 -5.13 4.1

The declaration

dvar_vector u("work.prn",3);

will create a dvar_vector whose elements are the third column of the file work.prn. That is,

u = (\ts-41,\ts356,\ts3.13e-4,\ts53.13\ts)

The entries of the file must be separated by blanks and all the entries in the column being read
must be in valid numeric format. This constructor will create a dvector whose minimum
valid index is 1.

Since this version of autodif does not feature resizable arrays, the only way that you can
place the product of two dvar_matrices M1 and M2 in a dvar_matrix M3 without knowing
or calculating the size of the product is to use the construction

dvar_matrix M3=M1*M2;

so the copy initializer constructor will create an object with the correct size. Of course, it
is possible to calculate the size of the product and explicitly declare the dvar_vector M3
by using the dvar_matrix access functions to obtain the row and column dimensions of the
matrices being multiplied, as in the code

dvar\_matrix M3(M1.rowmin(),M1.rowmax(),M2.colmin(),M2.colmax());
M3=M1*M2;

but this solution lacks elegance.

3.4 The dvector and dvar_vector access functions

Most of the components of the autodif classes are private, so they cannot be accessed
directly by the user. To allow the user to access the relevant elements of the classes, public
class member access functions are provided:
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int indexmin(); //Returns the minimum allowable index for an array
int indexmax(); //Returns the maximum allowable index for an array
int size(); //Returns the size of an array
int shift(int min); //Changes the allowable indices to min and min+size-1

These functions can be used to determine the size and valid index ranges of a vector
object that has been passed to a user’s function. Thus, it is not necessary to explicitly pass
such information when designing a function that uses a vector object. The information is
already passed with the object itself. If v is a dvector, the function v.indexmin() will
return the minimum valid index for v. The shift function allows the valid index range for a
dvector or dvar_vector to be changed. As an example of a function that acts on a vector
objects, here is a listing for a function that overloads the multiplication operator (*); v * w
will be the dot product (also sometimes called the “scalar product”) of the dvectors v and w:

double operator * (dvector& t1, dvector& t2)
{
// Check to see if vectors have the same valid index bounds
if (t1.indexmin() != t2.indexmin() || t1.indexmax() != t2.indexmax())
{
cerr << "Index bounds do not match in double operator * "

"(dvector&,dvector&)\n";
exit(1); // Stop if vectors are not compatible

}
double tmp;
tmp=0;
for (int i=t1.indexmin(); i<=t1.indexmax(); i++)
{
tmp+=t1[i]*t2[i];

}
return(tmp);

}

If you write your own functions, it is a good idea to provide both a constant and variable
version at the time of writing. This is especially true if you write a variable version of the rou-
tine. Suppose that the user has written a function void userfun(dvar_matrix) that takes
a dvar_matrix argument, but has neglected to make a version void userfun(dmatrix)
that takes a dmatrix argument. At some later time, the user wants to use the function
userfun with an argument of type dmatrix, such as in the following code segment.

{
dmatrix M(1,5,1,5);
userfun(M); // M will be converted to a dvar_matrix
// ...
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}

Since there is no version of userfun that accepts an argument of type dmatrix, the C++

compiler will convert M to an object of type dvar_matrix, by invoking the constructor for a
dvar_matrix(dmatrix&). This is probably not what the user intends and will be disastrous
if an object of type gradient_structure is not in scope at the time.

The corresponding variable version of the dot product for dvar_vectors would look like

dvariable operator * (dvar_vector& t1, dvar_vector& t2)
{
if (t1.indexmin() != t2.indexmin() || t1.indexmax() != t2.indexmax())
{
cerr << "Index bounds do not match in dvariable operator * "

"(dvar_vector&,dvar_vector&)\n";
exit(1);

}
RETURN_ARRAYS_INCREMENT();
dvariable tmp;
tmp=0;

for (int i=t1.indexmin(); i<=t1.indexmax(); i++)
{
tmp+=t1[i]*t2[i];

}
RETURN_ARRAYS_DECREMENT();
return(tmp);

}

The appearance of the statements

RETURN_ARRAYS_INCREMENT();

and

RETURN_ARRAYS_DECREMENT();

requires some explanation. autodif employs a stack of queues to hold intermediate arith-
metic results for variable objects. To ensure that these queues are not overflowed, you should
always increment the queue structure when entering a function that returns a variable ob-
ject, and decrement the queue structure when leaving the function. If you fail to increment
the queue structure and a queue overflow occurs, the program will continue to operate, but
the arithmetic will be corrupted. If you fail to decrement the queue structure when leaving
the function, you may eventually increment past the end of the stack of queues, producing
an error message

Overflow in RETURN_ARRAYS stack---Increase NUM_RETURN_ARRAYS
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There may be a RETURN_ARRAYS_INCREMENT()
which is not matched by a RETURN_ARRAYS_DECREMENT()

Simply include the increment and decrement statements in every function you create
that returns a variable object and everything will be fine. It is not necessary to include
the increment and decrement statements in a function that does not return a variable
type, because such a function cannot be used in an arithmetic statement. You should
never include the RETURN_ARRAYS_INCREMENT() and RETURN_ARRAYS_DECREMENT() func-
tions in a function that returns a void or constant type, such as double, dvector, or
dmatrix. The reason is that such a function might be called when there is no object
from the class gradient_structure in scope. Calling RETURN_ARRAYS_INCREMENT() or
RETURN_ARRAYS_DECREMENT() when there is no object of type gradient_structure in scope
could cause a serious program error.

3.5 Accessing array elements
Both the () and the [] operators can be used to access elements of arrays. There is absolutely
no difference between them. If v is a dvector, the ith element of v can be accessed by writing
either v[i] or v(i). Optional array bounds checking is provided for both operators. Array
bounds checking is implemented or turned off by linking with the appropriate library. No
changes in the user’s code are required. Linking with the safe libraries enables array bounds
checking, while linking with the optimized libraries disables array bounds checking.

3.6 Creating column vectors and row vectors
It is important to recognize that there is a difference in autodif between a vector object
and a matrix object that has either 1 row or 1 column. This means that a vector object
is neither a row vector nor a column vector, it is simply a vector object. We have adopted
this treatment of vector objects so that it is possible to multiply vector objects such as u
and v simply by writing u*v. If vector objects were the same as matrices with 1 column, it
would be necessary to write trans(u)*v to multiply two vectors. Here trans denotes the
transpose of a matrix object.

Sometimes it is useful to be able to treat vector objects as though they were matrices
with one row or column. The functions column_vector and row_vector enable this to be
done. The function

dmatrix column_vector(dvector& v);

will convert v into a matrix with 1 column. The valid column index is from 1 to 1. The valid
row index bounds are the same as the valid index bounds for v. The function

dmatrix row_vector(dvector& v);
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will convert v into a matrix with 1 row. The valid row index is from 1 to 1. The valid column
index bounds are the same as the valid index bounds for v.

As an example of how to use these functions, consider the problem of computing the
outer product of two vectors. The outer product of two vectors (ui) and (vj) is the matrix
wij, where wij = uivj. The statement

dmatrix w=column_matrix(v)*row_matrix(u);

will compute the outer product of the dvectors u and v. Of course, you can also use the
function outer_prod, supplied with the autodif libraries, to accomplish the same thing:

dmatrix w=outer_prod(u,v);

Another use for the column_vector function is to print out a vector one element to a
line. The overloaded operator << will write out a vector object all on one line. This is useful
if, for example, you want to put a vector object into a row in a spreadsheet, but it can be a
problem for some editors that cannot read such long lines in a file. The code

cout << column_vector(v);

will print out the vector v with one entry per line.

3.7 The dmatrix and dvar_matrix classes

The dmatrix and dvar_matrix classes are implemented, respectively, as arrays of dvector
and dvar_vectors. If M is a dmatrix, then M[j] or M(j) is a dvector whose elements are
the jth row of M. Since each row is a dvector that contains its own size (shape) information,
it is a simple matter to construct dmatrix objects—so-called “ragged” matrices—that have a
different numbers of rows in each column. Of course, these are not matrices in the usual sense
in which the word is used, but they can be useful container objects for some applications.
Therefore, we have extended the dmatrix and dvar_matrix classes to include them. As with
the dvector and dvar_vector classes, dmatrix and dvar_matrix classes appear identical
to the user, with the exception that derivative information is collected for the dvar_matrix
class. An object of type dvar_matrix is created by using the declarations

dmatrix M(lbr,lur,lbc,luc); // Creates a (lur-lbr+1)$\times$(luc-lbc+1) matrix
dmatrix M1=M; // M has already been defined. M1 is initialized

// by M.
dmatrix M(lbr,lur,ivec_lb,ivec_ub); // Creates a ‘‘ragged’’ dmatrix with a

// variable number of rows in each column
dmatrix M("filename"); // Creates a dmatrix whose elements are the

// contents of the file ‘‘filename’’
dmatrix M( "{ 1.5,-2.0,3.0,3.5 }"

"{ 2.0,14.0,5.1,2.2 }" );// creates and initializes a dmatrix
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The constructor

dmatrix(lbr,lur,ivec_lb,ivec_ub)

creates a dmatrix with lur-lbr+1 rows. The ith row is a dvector of size ivec_ub[i] −
ivec_lb[i]+1 with a range of valid indices running from ivec_lb[i] to ivec_ub[i].
ivec_lb and ivec_ub are instances of the class ivector, that is, vectors of integers. They
must have valid indices ranging from lbr to lur. For example, suppose we wish to make
a ragged dvar_matrix with 4 rows for which the valid row index bounds should be from 2
to 5. The declaration should be

dvar_matrix M(2,5,ivec_lb,ivec_ub);

Suppose the desired valid row indices are 1 to 6 for row 1, 0 to 3 for row 2, 1 to 2 for
row 4, and 3 to 9 for row 5. The legal bounds on the ivectors ivec_lb and ivec_ub must
be equal to the legal column bounds on M. We can create such ivector objects with the
declaration

ivector ivec_lb(2,5);
ivector ivec_ub(2,5);

The correct values for ivec_lb and ivec_ub can be inserted for example by using the
“fill” function

ivec_lb.fill("{1,0,1,3}");
ivec_ub.fill("{6,3,2,9}");

Alternatively, the desired ivector objects can be created with the declarations

ivector ivec_lb("{1,0,1,3}");
ivector ivec_ub("{6,3,2,9}");

These declarations will create ivector objects whose legal bounds go from 1 to 4. To
change the valid index bounds to the desired values from 2 to 5, the class member function
shift() can be used:

ivec_lb.shift(2); // legal bounds will be from 2 to 5
ivec_ub.shift(2); // legal bounds will be from 2 to 5

As is the case for vector objects, the copy initializer for matrix objects performs a light
copy. To create a distinct new matrix object, you must use the assignment operator (=).

The declaration

dmatrix M("filename");

will create a dmatrix M whose elements are the contents of the file filename. All entries in
the file must be in valid numeric format. All entries must be separated by blanks or commas.
Each line in the file becomes a line of the matrix. Ragged matrices are supported, so the
files may have different number of entries in each line. For the dos version of autodif, no
line may contain more than 6550 elements.
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To create a dmatrix and initialize it with data, a declaration of the form

dmatrix W( "{ 1.5,-2.0,3.0,3.5 }"
"{ 2.0,14.0,5.1,2.2 }" );

can be used.
This declaration will create a dmatrix with 2 rows and 4 columns. The minimum valid

index for the rows and columns is set equal to 1.

3.8 The dmatrix access functions

The components of all the autodif classes are private, which means that they cannot be
accessed directly by the user. Public class member access functions are provided to allow
the user to access the relevant elements of the classes:

int rowmin(); //Returns the minimum allowable row index for a matrix
int rowmax(); //Returns the maximum allowable row index for a matrix
int colmin(); //Returns the minimum allowable column index for a matrix
int colmax(); //Returns the maximum allowable column index for a matrix
int rowsize(); //Returns the number of rows in an array
int colsize(); //Returns the number of columns in an array
void colshift(int&); //Changes the range of valid indices for the columns
void rowshift(int&); //Changes the range of valid indices for the rows

3.9 The 3-dimensional arrays
d3array and dvar3_array

Three-dimensional arrays have been implemented in this version of autodif mainly as
containers for collections of 2-dimensional arrays. If u is a d3array then u[1] or u(1) is a
dmatrix (provided that 1 is a valid index for u). We shall refer to the object obtained by
fixing the first index of a 3-dimensional array as a “slice.” An element of a 3-dimensional
array is determined by picking a slice, a row, and a column.

An object of type dvar3_array is created by using the declarations

dvar_3darray M(ls,us,lr,ur,lc,uc); // Creates a (us-ls+1)*(ur-lr+1)*(uc-lc+1)
// dvar_3darray

dvar_3darray M1=M; // M has already been defined. M1 is
// initialized by M.

d3array(ls,us,ivec_lr,ivec_ur,ivec_lc,ivec_uc); // Creates a ragged d3array
// with a variable size dmatrices in each slice.
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3.10 The d3array access functions

int slicemin(); //Returns the minimum allowable slice index for a d3array
int slicemax(); //Returns the maximum allowable slice index for a d3array
int rowmin(); //Returns the minimum allowable row index for a d3array
int rowmax(); //Returns the maximum allowable row index for a d3array
int colmin(); //Returns the minimum allowable column index for a d3array
int colmax(); //Returns the maximum allowable column index for a d3array
int slicesize(); //Returns the number of slices in a d3array
int rowsize(); //Returns the number of rows in an d3array
int colsize(); //Returns the number of columns in an array
void sliceshift(int&); //Changes the range of valid indices for the slices
void colshift(int&); //Changes the range of valid indices for the columns
void rowshift(int&); //Changes the range of valid indices for the rows

3.11 Converting between the integer
and floating point container objects

It is often useful to be able to convert a floating point object into an integer object, or an
integer object into a floating point object. (See, for instance, the example on creating a
bootstrap sample, where a dvector object of random numbers is converted into an ivector
object of integer indices.) It is possible to convert between vector objects as follows:

ivector <--> dvector
lvector <--> dvector
lvector <--> ivector

These conversions may be made explicit, as in the following code fragment:

dvector u(1,10);
ivector iv(1,10);
// ...
iv = ivector(u); // iv will be filled with the integer parts of the

// components of u

or the conversion may be “implicit,” that is, supplied by the compiler.

dvector u(1,10);
// ...
ivector iv = u; // iv will be filled with the integer parts of the

// components of u

In the second example, the ivector iv will have minimum and maximum valid indices
determined by the minimum and maximum valid indices of the dvector u.
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Chapter 4

Operations and Functions

4.1 The operators + and −
Since autodif supplies a large number of operators and functions, there is often more than
one way to carry out a given calculation. While all equivalent methods will produce the same
answer, one method may produce more efficient code. For example, the two lines of code

A=A+B;
//
A+=B;

will both add the object A to the object B and store the result in A. (This will work whether
A and B are numbers, vectors, or matrices.) However, the code produced by A+=B is more
efficient in all cases. It is both faster and generates less temporary data to be stored.

While the type of object produced by an arithmetic operation depends on whether the ar-
guments are constants (double, dvector or dmatrix) or variables (dvariable, dvar_vector,
or dvar_matrix), the sort of operation defined by the operation does not. The symbol +
between two vector objects will denote the component-wise sum of these vectors and produce
a vector object corresponding to their sum. This is true regardless of whether one or both
objects are constant or variable objects. We denote this by writing

vector_object = vector_object + vector_object // vector sum

We shall refer to the “output” object on the left side of the equals sign (=) by z if it is
a number, zi if it is a vector and zij if it is a matrix—in order to express the components
of the operation. We shall refer to the first input object (the one on the right side of the
equals sign) by x, xi, and xij, and the second input object—if there is one—by y, yi, and
yij. For any operation, the property of being a variable is dominant in that if either of the
input objects is a variable, then the output object is a variable.

vector_object = vector_object + vector_object // vector sum
zi = xi + yi
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vector_object = number + vector_object // add number to vector
zi = x+ yi

vector_object = vector_object + number // add number to vector
zi = xi + y

matrix_object = matrix_object + matrix_object // matrix sum
zij = xij + yij

matrix_object = matrix_object + number // matrix sum
zij = xij + y

vector_object = vector_object - vector_object // vector difference
zi = zi − yi

vector_object = vector_object - number // subtract number from a vector
zi = xi − y

matrix_object = matrix_object - number // matrix difference
zij = xij − y

matrix_object = matrix_object - matrix_object // matrix difference
zij = xij − yij

4.2 The operators +=, -=, *=, and /=

These operators generate faster code than the corresponding operators defined above, since
their use avoids both the necessity for creating a temporary object to hold the result, and
the extra overhead associated with assigning the values contained in this temporary object
to the left-hand side of the expression.

vector_object += vector_object // vector sum
xi += yi

vector_object += number // add number to vector
xi += d

vector_object -= vector_object // vector difference
xi −= yi

vector_object -= number // subtract number from vector
xi −= d

vector_object /= number // divide vector by number
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xi /= d

vector_object *= number // multiply vector by number
xi ∗= d

matrix_object += matrix_object // matrix sum
xij += yij

matrix_object += number // add number to matrix
xij += d

matrix_object -= matrix_object // matrix subtraction
xij −= yij

matrix_object -= number // subtract number from matrix
xij −= d

4.3 The operators ∗ and /

number = vector_object * vector_object // vector dot product
z =

∑
i xiyi

vector_object = number * vector_object // scalar product
zi = x ∗ yi

vector_object = vector_object * number // scalar product
zi = xi ∗ y

vector_object = vector_object * matrix_object // vector times matrix
zj =

∑
i xi ∗ yij

vector_object = matrix_object * vector_object // matrix times vector
zi =

∑
j xij ∗ yj

matrix_object = matrix_object * matrix_object // matrix times matrix
zij =

∑
k xik ∗ ykj

matrix_object = number * matrix_object // scalar times matrix
zij = x ∗ yij

An additional vector-matrix operation is the outer product of two vectors.

matrix_object = outer_prod(vector_object,vector_object)
// outer product of two vectors
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zij = xi ∗ yj

vector_object = vector_object / number // divide a vector by a number
zi = xi/y

vector_object = number / vector_object // divide a number by a vector elements
zi = x/yi

matrix_object = matrix_object / number // divide a matrix by a number
zij = xij/y

4.4 The concatenation of vector objects
The & operator has been overloaded to produce the concatenation of two vector objects:

vector_object=vector_object & vector_object

If x=(xr, . . . , xn) and y=(ys, . . . , ym), then x & y= (xr, . . . , xn, ys, . . . , ym) and the minimum
valid index for x & y is equal to the minimum valid index for x.

Since in the present version of autodif arrays are not resizable, it is not possible to
write something like

x = x & y;

where x and y are dvectors. Instead, you must do something like

dvector z = x & y;

Future versions of autodif will incorporate resizable arrays.

4.5 Element-wise operations
There are several operations familiar to users of spreadsheets that do not appear as often in
classical mathematical calculations. For example, spreadsheet users often wish to multiply
one column in a spreadsheet by the corresponding elements of another column. Spread sheet
users might find it much more natural to define the product of matrices as an element-wise
operation such as

zij = xij ∗ yij
The “classical” mathematical definition for the matrix product has been assigned to the
overloaded multiplication operator (*), so large mathematical formulas involving vector and
matrix operations can be written in a concise notation. Typically, spreadsheet-type cal-
culations are not so complicated and do not suffer so much from being forced to adopt a
“function-style” of notation.

Since addition and subtraction are already defined in an element-wise manner, it is only
necessary to define element-wise operations for multiplication and division. We have named
these functions elem_prod and elem_div.
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vector_object = elem_prod(vector_object,vector_object) // element-wise multiply
zi = xi ∗ yi

vector_object = elem_div(vector_object,vector_object) // element-wise divide
zi = xi/yi

matrix_object = elem_prod(matrix_object,matrix_object) // element-wise multiply
zij = xij ∗ yij

matrix_object = elem_div(matrix_object,matrix_object) // element-wise divide
zij = xij/yij

4.6 The identity matrix function identity_matrix

matrix_object = identity_matrix(int min,int max)
creates a square identity matrix with minimum valid index min and maximum valid in-
dex max.

4.7 The operations det, inv, norm, norm2,
min, max, sum, rowsum, and colsum

The determinant of a matrix object

(The matrix must be square: that is, the number of rows must equal the number of columns.)

matrix_object = det(matrix_object)

The inverse of a matrix object

(The matrix must be square: that is, the number of rows must equal the number of columns.)

matrix_object = inv(matrix_object)

The norm of a vector object

number = norm(vector_object)
z =

√∑
i x

2
i

The norm squared of a vector_object
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number = norm2(vector_object)
z =

∑
i x

2
i

The norm of a matrix_object

number = norm(matrix_object)

z =
√∑

ij x
2
ij

The norm squared of a matrix_object

number = norm2(matrix_object)
z =

∑
ij x

2
ij

The sum over the elements of a vector object

number = sum(vector_object)
z =

∑
i xi

The row sums of a matrix object

vector = rowsum(matrix_object)
zi =

∑
j xij

The column sums of a matrix object

vector = colsum(matrix_object)
zj =

∑
i xij

The minimum element of a vector object

number = min(vector_object)

The maximum element of a vector object

number = max(vector_object)
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4.8 Eigenvalues and eigenvectors
of a symmetric matrix

While we have included eigenvalue and eigenvector routines for both constant and variable
matrix objects, you should be aware that, in general, the eigenvectors and eigenvalues are
not differentiable functions of the variables determining the matrix.

The eigenvalues of a symmetric matrix

vector_object = eigenvalues(matrix_object)

are returned in a vector. It is the user’s responsibility to ensure that the matrix is actually
symmetric. The routine symmetrizes the matrix so that the eigenvalues returned are actually
those for the symmetrized matrix.

The eigenvectors of a symmetric matrix:

matrix_object = eigenvectors(matrix_object)

are returned in a matrix. It is the user’s responsibility to ensure that the matrix is actu-
ally symmetric. The routine symmetrizes the matrix so that the eigenvectors returned are
actually those for the symmetrized matrix. The eigenvectors are located in the columns of
the matrix. The ith eigenvalue returned by the function eigenvalues corresponds to the ith
eigenvector returned by the function eigenvector.

4.9 The Choleski decomposition of a
positive definite symmetric matrix

For a positive definite symmetric matrix S, the Choleski decomposition of S is a lower
triangular matrix T satisfying the relationship S=T*trans(T). If S is a (positive definite
symmetric) matrix object and T is a matrix object, the line of code

T=choleski_decomp(S);

will calculate the Choleski decomposition of S and put it into T.

4.10 Solving a system of linear equations

If y is a vector and M is an invertible matrix, then finding a vector x such that

x=inv(M)*y

will be referred to as solving the system of linear equations determined by y and M. Of course,
it is possible to use the inv function to accomplish this task, but it is much more efficient
to use the solve function.
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vector x=solve(M,y); // x will satisfy x=inv(M)*y;

It turns out that it is a simple matter to calculate the determinant of the matrix M at
the same time as the system of linear equations is solved. Since this is useful in multivariate
analysis, we have also included a function that returns the determinant at the same time as
the system of equations is solved. To avoid floating point overflow or underflow when working
with large matrices, the logarithm of the absolute value of the determinant, together with
the sign of the determinant, are returned. The constant form of the solve function is

double ln_det;
double sign;
dvector x=solve(M,y,ln_det,sign);

while the variable form is

dvariable ln_det;
dvariable sign;
dvar_vector x=solve(M,y,ln_det,sign);

The solve function is useful for calculating the log-likelihood function for a multivariate
normal distribution. Such a log-likelihood function involves a calculation similar to

l = -.5*log(det(S)) -.5*y*inv(S)*y

where S is a matrix object and y is a vector object. It is much more efficient to carry out
this calculation using the solve function. The following code illustrates the calculations for
variable objects:

dvariable ln_det;
dvariable sign;
dvariable l;
dvar_vector tmp=solve(M,y,ln_det,sign);
l=-.5*ln_det-y*tmp;

4.11 Methods for filling arrays and matrices

While it is always possible to fill vectors and matrices by using loops and filling them element
by element, this is tedious and prone to error. To simplify this task, a selection of methods
for filling vectors and matrices with random numbers, or a specified sequence of numbers, is
available. There are also methods for filling row and columns of matrices with vectors. In
this section the symbol vector can refer to either a dvector or a dvar_vector, while the
symbol matrix can refer to either a dmatrix or a dvar_matrix.

void vector::fill("{m,n,...,}")
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fills a vector with a sequence of the form n, m,. . . The number of elements in the string must
match the size of the vector.

void vector::fill_seqadd(double& base, double& offset)
fills a vector with a sequence of the form base, base+offset, base+2*offset,. . .

For example, if v is a dvector created by the statement

dvector v(0,4);

then the statement

v.fill_seqadd(-1,.5);

will fill v with the numbers (−1.0,−0.5, 0.0, 0.5, 1.0).

void matrix::rowfill_seqadd(int& i,double& base, double& offset)
fills row i of a matrix with a sequence of the form base, base+offset, base+2*offset,. . .

void matrix::colfill_seqadd(int& j,double& base, double& offset)
fills column j of a matrix with a sequence of the form base, base+offset, base+2*offset,. . .

void matrix::colfill(int& j,vector&)
fills the jth column of a matrix with a vector.

void matrix::rowfill(int& i,vector&)
fills the ith row of a matrix with a vector.

In this section, a uniformly distributed random number is assumed to have a uniform
distribution on [0, 1]. A normally distributed random number is assumed to have mean 0 and
variance 1. A binomially distributed random number is assumed to have a parameter p, where
1 is returned with probability p, and 0 is returned with probability 1− p. A multinomially
distributed random variable is assumed to have a vector of parameters P , where i is returned
with probability pi. If the components of P do not sum to 1, the vector will be normalized
so that the components do sum to 1.

void vector::fill_randu(long int& n)
fills a vector with a sequence of uniformly distributed random numbers. The long int n is
a seed for the random number generator. Changing n will produce a different sequence of
random numbers.

void matrix::colfill_randu(int& j,long int& n)
fills column j of a matrix with a sequence of uniformly distributed random numbers. The
long int n is a seed for the random number generator. Changing n will produce a different
sequence of random numbers.

void matrix::rowfill_randu(int& i,long int& n)
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fills row i of a matrix with a sequence of uniformly distributed random numbers.

void vector::fill_randbi(long int& n, double& p)
fills a vector with a sequence random numbers from a binomial distribution.

void vector::fill_randn(long int& n)
fills a vector with a sequence of normally distributed random numbers.

void matrix::colfill_randn(int& j,long int& n)
fills column j of a matrix with a sequence of normally distributed random numbers.

void matrix::rowfill_randn(int& i,long int& n)
fills row i of a matrix with a sequence of normally distributed random numbers.

void vector::fill_multinomial(long int& n, dvector& p)
fills a vector with a sequence random numbers from a multinomial distribution. The param-
eter p is a dvector such that p[i] is the probability of returning i. The elements of p must
sum to 1.

4.12 Methods for extracting from arrays and matrices

vector extract_column(matrix& M,int& j)
extracts a column from a matrix and puts it into a vector.

vector extract_row(matrix& M,int& i)
extracts a row from a matrix and puts it into a vector.

vector extract_diagonal(matrix& M)
extracts the diagonal elements from a matrix and puts them into a vector.

The function call operator (()) has been overloaded in two ways to provide for the
extraction of a subvector. Xvectorextracting a subvector

vector(ivector&)

An ivector object is used to specify the elements of the vector to be chosen. If u and v are
dvectors and i is an ivector, then the construction

dvector u = v(i);

will extract the members of v indexed by i and put them in the dvector u. The size of u is
equal to the size of i. The dvector u will have minimum valid index and maximum valid
index equal to the minimum valid index and maximum valid index of i. The size of i can be
larger than the size of v, in which case some elements of v must be repeated. The elements
of the ivector i must lie in the valid index range for v.

If v is a dvector and i1 and i2 are two integers,
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u(i1,i2)

is a dvector, which is a subvector of v (provided, of course, that i1 and i2 are valid indices
for v). Subvectors can appear on both the left and right-hand side of an assignment:

dvector u(1,20);
dvector v(1,19);
v = 2.0; // assigns the value 2 to all elements of v
u(1,19) = v; // assigns the value 2 to elements 1 through 19 of u

In the above example, suppose that we wanted to assign the vector v to elements 2
through 20 of the vector u. To do this, we must first ensure that they have the same valid
index ranges. The operators ++ and --, when applied to vector objects, increment and
decrement the index ranges by 1. See the code fragment below:

dvector u(1,20);
dvector v(1,19);
v = 2.0; // assigns the value 2 to all elements of v
--u(2,20) = v; // assigns the value 2 to elements 2 through 20 of u
u(2,20) = ++v; // assigns the value 2 to elements 2 through 20 of u

It is important to realize that from the point of view of the vector v, both of the above
assignments have the same effect. It will have elements 2 through 20 set equal to 2. The
difference is the side effects on the vector v. The use of subvectors, and increment and
decrement operations, can be used to remove loops from the code. Note that

dvector x(1,n)
dvector y(1,n)
dvector z(1,n)
for (int i=2;i<=n;i++)
{
x(i)=y(i-1)*z(i-1);

}

can be written as

dvector x(1,n)
dvector y(1,n)
dvector z(1,n)
x(2,n)=++elem_prod(y(1,n-1),z(1,n-1)); // elem_prod is element-wise

// multiplication of vectors

4.13 Making a bootstrap sample

Xbootstrap samplecode for
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As an example of how one can use some of these operations, consider the problem of
creating bootstrap samples from a set of data. Suppose we wish to create a random sample
(with replacement) of the original data set. Assume that the original data is contained in a
dvector object named data. It is not necessary that the new samples be the same size as
the original sample, so we shall allow the size of the bootstrap sample to be a variable. The
code for the function bootstrap follows:

dvector bootstrap(dvector& data, int& sample_size, long int seed)
{
// data contains the data which is used to make the bootstrap sample
// sample_size is the size of the desired bootstrap sample
// seed is a seed for the random number generator
dvector tmp(1,sample_size);
tmp.fill_randu(seed); // 0<tmp(j)<1 for 1<j<sample_size
tmp=tmp*data.size()+1; // 1<tmp(j)<data.size()+1 for 1<j<sample_size
ivector iselect(tmp); // Take the integer parts of tmp and put them

// into iselect
// 1<=iselect(j)<=data.size() for 1<=j<=sample_size

tmp=data(iselect); // Select the bootstrap sample and
// store it in tmp

return(tmp);
}

The above code could be employed in the user’s code to make bootstrap samples by using
something like the following code fragment:

// ...
dvector data(1,nobs)
// ... somehow the data is put into data
// ...
dvector boot_sample=bootstrap(data,200,1231); // Make a sample of size 200

// and create the dvector boot_sample to hold it
// ...

4.14 Sorting vectors and matrices

While sorting is not strictly part of the methods for calculating the derivatives of differen-
tiable functions (as it is a highly non-differentiable operation), it is so useful for pre- and
post-processing data that we have included some functions for sorting dvector and dmatrix
objects. If v is a dvector the statement

dvector w=sort(v);
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will sort the elements of v in ascending order and put them in the dvector object w. The
minimum and maximum valid indices of w will be the same as those of v. If desired, an
index table for the sort can be constructed by passing an ivector along with the dvector.
This index table can be used to sort other vectors in the same order as the original vector
using the () operator.

dvector u={4,2,1};
dvector v={1,6,5}
ivector ind(1,3);
dvector w=sort(u,ind); // ind will contain an index table for the sort
// Now w=(1,2,4) and ind=(3,2,1)
dvector ww=v(ind); // This is the use of the ( ) operator for subset

// selection.
// Now ww=(5,6,1)

The sort function for a dmatrix object sorts the columns of the dmatrix into ascending
order, using the column specified to do the sorting. For example,

dmatrix MM = sort(M,3);

will put the sorted matrix into MM, and the third column of MM will be sorted in ascend-
ing order.

4.15 Mathematical functions
The following functions have been included in autodif by overloading the C++ library
functions:

sin cos tan asin atan acos sinh cosh tanh fabs (sfabs) exp log log10 sqrt pow

These functions can be used on numbers or vector_objects in the form

number = function(number);
vector_object = function(vector_object);

When operating on vector_objects, the functions operate element by element. So, if y is
a dvector whose elements are (y1, . . . , yn), then exp(y) is a dvector whose elements are
(exp(y1), . . . , exp(yn)).

The functions min and max, when applied to a vector_object, return a number that is
equal to the minimum or maximum element of the vector_object.

4.16 Using the smoothed absolute value function sfabs

The function sfabs is a “smoothed” absolute value function that agrees with the standard
absolution function for all values of its argument with absolute value greater than 0.001.
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For values of its argument less than 0.001 in absolute value, the function uses cubic splines
to produce a differentiable approximation to the absolute value function. This function is
intended to be used when a differentiable function that approximates the absolute value
function is needed.

While the function sfabs has been set to agree with the absolute value function fabs for
all values greater than 0.001, it is a simple matter to rescale the function to agree with the
absolute value function over any desired range, by multiplying and dividing it by the desired
scale factor:

double scale
double x
// ...
double v=scale*sfabs(x/scale); // This function will agree with fabs

// for all components of w with absolute value
// greater than scale*.001
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Figure 4.1: Plot of the smoothed absolute value function y=1000*sfabs(x/1000) and the
normal absolute value function y=fabs(x).

In Figure 4.1, the function sfabs has been “magnified” by a scale factor of 1000, to show
how it differs from the ordinary absolute value function fabs.
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Chapter 5

Advanced Concepts

This chapter is devoted to various matters that enable the autodif user to create more
advanced applications, and to obtain faster performance from the autodif code created.
Beginning users can skip or briefly skim the topics contained here.

5.1 Reducing the size of the temporary files

A disadvantage of the reverse mode of automatic differentiation is the large amount of tem-
porary storage required for keeping the intermediate data for the derivative calculations.
Every arithmetic operation on a dvariable object generates 28–30 bytes of temporary stor-
age. To see what this means, consider that to invert an n×n matrix requires about n3 such
operations. So, the temporary storage required for inverting a 100 × 100 matrix would be
about 28–30 megabytes.

To reduce the requirements for temporary storage, autodif employs precompiled deriva-
tive code for common operations on variable container classes. Depending on the operation,
this can greatly reduce the temporary storage used. For the matrix inverse, the storage for
a 100 × 100 matrix is about 500K, a reduction of about 60 to 1. For a vector dot product,
the reduction in temporary storage requirements is about 3.5 to 1. While this is much less
than the matrix inverse, it can still be a considerable saving in large problems.

To achieve the best performance, you should use autodif’s vector and array operations
on variable objects whenever possible, rather than writing your own code to manipulate
elements of these container classes. Consider the following code fragment which “normalizes”
a dvar_vector so that its components sum to 1:

dvar_vector v(1,n);
// get some data into v somehow
// ...
// now normalize v so that its components sum to 1
dvariable sum=0.;
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for (int i=1;i<=n;i++)
{
sum+=v(i);

}
for (i=1;i<=n;i++)
{
v(i)=v(i)/sum;

}

The same normalization can be achieved by the following code. It uses the autodif
function sum, which sums the components of a vector object. It also uses the divide operator,
for dividing a vector by a number. It will produce less temporary derivative information.

dvar_vector v(1,n);
// get some data into v somehow
// ...
// now normalize v so that its components sum to 1
v=v/sum(v);

Even more efficient code is generated by employing the /= operator, which divides a
vector by a number:

v/=sum(v);

5.2 Creating efficient code when accessing arrays

Consider the following code fragment for adding two matrix objects:

dvar_matrix a(1,n,1,n);
dvar_matrix b(1,n,1,n);
dvar_matrix c(1,n,1,n);
// ...
for (int i=1;i<=n;i++)
{
for (int j=1;j<=n;j++)
{
a(i,j)=b(i,j)+c(i,j);

}
}

A fortran compiler that only has to deal with a small number of array types can be
expected to produce well-optimized code from the above source code. C++ compilers are less
likely to be able to exploit that fact that the first index i is constant in the inner loop. It is
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to be expected that, in the future, the ability of C++ compilers to optimize code will improve.
In the meantime, code segments such as the above can be optimized by the user through
the use of “references.” If a is a dvar_matrix, then a(i) (or a[i]) is a dvar_vector. This
fact can be used to reduce the redundant addressing operations on the first index in the
above example, by defining reference objects for these dvar_vectors. If you are not familiar
with the concept of references, which are extremely useful in C++, consult your C++ reference
manual.

dvar_matrix a(1,n,1,n);
dvar_matrix b(1,n,1,n);
dvar_matrix c(1,n,1,n);
// ...
for (int i=1;i<=n;i++)
{
dvar_vector& ai=a(i);
dvar_vector& bi=b(i);
dvar_vector& ci=c(i);
for (int j=1;j<=n;j++)
{
ai(j)=bi(j)+ci(j);

}
}

Note, however, that the most efficient way to add two matrices is to use the code

a=b+c;

Of course, there is some overhead involved in establishing the references, so this would
not be worthwhile for very small values of n.

5.3 Ragged matrices and 3-dimensional arrays

A big advantage of C++ over traditional scientific programming languages, such as fortran,
is the increased facility for defining and manipulating complex data structures. Many real-
world situations cannot be conveniently described in terms of the simple “flat” data structures
represented by vectors, matrices, and regular 3-dimensional arrays.

As an aid to creating more complex data structures, autodif’s 2- and 3-dimensional
container classes have been extended to what we call “ragged arrays.” In short, a ragged
matrix is a matrix whose rows consist of vectors of different lengths and varying valid index
ranges. A ragged 3-dimensional array can be viewed as an array of matrices of different sizes,
but such matrices may or may not be ragged themselves.
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5.4 Specifying ragged matrices

To specify a ragged matrix requires two integers for the minimum and maximum valid row
indices, a vector of integers for the minimum valid index of the vector forming each row of
the matrix, and a vector of integers for the maximum valid index of the vector forming each
row of the matrix.

int min=0;
int max=4;
ivector minind(0,4);
ivector maxind(0,4);
// get the desired values into the ivectors minind and maxind
// ...
dmatrix M(min,max,minind,maxind);

Notice that the minimum and maximum valid indices for minind and maxind must be
the same as the minimum and maximum valid row indices for the matrix M.

Suppose that minind(3) = −1 and maxind(3) = 5. Then the fourth row of M will be a
vector with seven components whose minimum valid index is −1 and whose maximum valid
index is 5.

Often one desires to make a ragged matrix where the minimum valid index for all the
rows is the same. This can be accomplished by filling the ivector minind with the same
number in each component. For convenience, a matrix constructor that takes an int for its
third argument has been supplied.

int min=0;
int max=4;
int minind=1;
ivector maxind(0,4);
// get the desired values into the ivector maxind
dmatrix M(min,max,minind,maxind);

This will make a ragged matrix M. The minimum valid indices for vectors making up the
rows of M will all be equal to 1.

5.5 Specifying ragged 3-dimensional arrays

The range of constructors available for ragged 3-dimensional arrays is considerably more com-
plicated than for ragged matrices. The most general constructor for a ragged 3-dimensional
array has the following prototype:

d3_array(int sl,int su,ivector& rl,ivector& ru,imatrix& cl,imatrix& cu);
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The ith slice of the d3_array is a ragged dmatrix that is constructed using the data
rl(i), ru(i), cl(i), and cu(i), as described above. Notice that rl(i) and ru(i) are of type
int, while cl(i) and cu(i) are objects of type ivector. So, this all makes sense. This is
the most “ragged” of 3-dimensional objects. There is also a constructor with the following
prototype:

d3_array(int sl,int su,ivector& rl,ivector& ru,ivector& cl,ivector& cu);

The ith slice of the d3_array will use the data rl(i), ru(i), cl(i), and cu(i) to make a
dmatrix. Since these arguments are all of type int, each slice of the ragged 3-dimensional
array consists of a “non-ragged” or regular matrix object. An example of the use of a
ragged 3-dimensional array for a data structure is given in Chapter 15. The complete list of
constructors provided for specifying 3-dimensional arrays is:

d3_array( int& sl, int& sh, int& nrl,
int& nrh, int& ncl, int& nch);

d3_array(int& sl,int& sh,ivector& nrl,ivector& nrh,
imatrix& ncl,imatrix& nch);

d3_array(int& sl,int& sh,ivector& nrl,ivector& nrh,
int ncl,imatrix& nch);

d3_array(int& sl,int& sh,ivector& nrl,ivector& nrh,
ivector& ncl,ivector& nch);

d3_array(int& sl,int& sh,int& nrl,ivector& nrh,
int& ncl,ivector& nch);

d3_array(int& sl,int& sh,int& nrl,ivector& nrh,
int& ncl,int& nch);

d3_array(int sl,int sh,int nrl,ivector& nrh,
int ncl,imatrix& nch);

5.6 Complex data structures:
making order out of chaos

As your model becomes more complex, the number of autodif objects required will increase
until the code again starts to become unmanageable. One solution is to group these objects
themselves into structures or classes, so they can be manipulated as single objects.
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Suppose that your model has five vector objects whose minimum valid indices are 1 and
whose maximum valid indices are all equal to an integer n, whose value is known at run time.
Denote these vector objects by a1, a2,. . ., a5. Let the model have five more vector objects
whose minimum valid indices are 1 and whose maximum valid indices are 2n. Denote these
vector objects by b1, b2,. . ., b5. Finally, suppose the model has a (regular) matrix object
whose valid row indices go from 1 to n and whose valid column indices go from 0 to 2n.
Denote this matrix by M. We can encapsulate all these objects in a class as follows.

// class definition for constant_model_parameters
class constant_model_parameters
{
public:
int size;
dvector a1;
dvector a2;
dvector a3;
dvector a4;
dvector a5;
dvector b1;
dvector b2;
dvector b3;
dvector b4;
dvector b5;
dmatrix M;
constant_model_parameters(int n); // prototype for constructor

};

At the point in your program where you want to “create” this object, you will need to
invoke the constructor described below. The invocation is simply a declaration of the object
with its name, such as:

int n=10;
// ...
constant_model_parameters cmp(n); //creates the object with name "cmp"

The main part of the implementation of the class is in the definition of the constructor.

constant_model_parameters::constant_model_parameters(int n) :
a1(1,n),a2(1,n),a3(1,n),a4(1,n),a5(1,n),
b1(1,2*n),b2(1,2*n),b3(1,2*n),b4(1,2*n),b5(1,2*n),
M(1,n,0,2*n) {size=n;}

If you are not familiar with the form of the constructor above, you should consult a C++

reference book. The idea is that the constructors for all the classes that are members of the
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class constant_model_parameters are invoked after the colon (:) and before the body of
the constructor.

Note that while for the “safe” library all container classes are initialized to zero, for the
optimized library, they are not. If you want to initialize some of these objects, such as a1
and M, this should be done in the body of the constructor.

constant_model_parameters::constant_model_parameters(int n) :
a1(1,n),a2(1,n),a3(1,n),a4(1,n),a5(1,n),
b1(1,2*n),b2(1,2*n),b3(1,2*n),b4(1,2*n),b5(1,2*n),
M(1,n,0,2*n)

{
size=n;
a1.initialize(); // set components of a1 and M to 0
M.initialize();

}

All the objects in the class constant_model_parameters are as the name implies: con-
stants. This class could be useful for reading in the parameters from a file, for example, and
otherwise manipulating them. At some point, presumably the user wants the parameters
transformed into variable objects so that derivative information can be generated. This can
be done by defining a corresponding variable class:

// class definition for variable_model_parameters
class variable_model_parameters
{
public:
dvar_vector a1;
dvar_vector a2;
dvar_vector a3;
dvar_vector a4;
dvar_vector a5;
dvar_vector b1;
dvar_vector b2;
dvar_vector b3;
dvar_vector b4;
dvar_vector b5;
dvar_matrix M;
// This constructor transforms the constant parameters into
// variable parameters
variable_model_parameters(constant_model_parameters&); // prototype

// for constructor
};
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The constructor for the class variable_model_parameters takes the constant objects in
the class constant_model_parameters and converts them to variable objects.

variable_model_parameters::variable_model_parameters
(constant_model_parameters& cms) :
a1(cms.a1),a2(cms.a2),a3(cms.a3),a4(cms.a4),a5(cms.a5),
b1(cms.b1),b2(cms.b2),b3(cms.b3),b4(cms.b4),b5(cms.b5),
M(cms.M) {size=cms.size;}

After all this has been done, the constant and variable classes could be used, as in:

void fcomp(variable_model_parameters&); // function prototype for fcomp
int n=10;
constant_model_parameters cms(n);
// get some data into cms
//
// call a function which takes an object of type variable_model_parameters
fcomp(cms); // cms will be converted into an object of type

// variable_model_parameters

Since in this example, the only constructor that has been defined for an object of type
variable_model_parameters takes an argument of type constant_model_parameters, the
only way to create the variable object will be to first create the constant object. This may
or may not be what is required. Of course, a constructor can be defined to create a variable
object from the int n.

5.7 Default constructors for complex data structures

You should be aware that the C++ compiler attempts to create default constructors for
complex classes if they are not provided by the user. To do this, it employs the constructors
provided for the members of the complex class. For example, if you employ the lines of code

constant_model_parameters cmp(10);
constant_model_parameters cmp1=cmp;

the compiler use a default copy constructor for the class constant_model_parameters (as-
suming that you, the user, have not already defined one). In order to create the default
copy constructor, the compiler will invoke the copy constructors provided by autodif for
dvector and dmatrix classes. Since these constructors perform shallow copies, the dvector
and dmatrix objects in cmp1 will not be distinct from the corresponding objects cmp. If
you want to define a copy constructor for the class constant_model_parameters that will
create a distinct object, it could be done as follows:

constant_model_parameters::
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constant_model_parameters(constant_model_parameters cms) :
a1(1,cms.size),a2(1,cms.size),a3(1,cms.size),a4(1,cms.size),
a5(1,cms.size),b1(1,2*cms.n),b2(1,2*cms.n),b3(1,2*cms.n),
b4(1,2*cms.n),b5(1,2*cms.n),
M(1,cms.size,0,2*cms.size)

{
size=cms.size;
a1=cms.a1;
a2=cms.a2;
a3=cms.a3;
a4=cms.a4;
a5=cms.a5;
b1=cms.b1;
b2=cms.b2;
b3=cms.b3;
b4=cms.b4;
b5=cms.b5;
M=cms.M;

}
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Chapter 6

The autodif Libraries

autodif is supplied with safe and optimized versions of its object module libraries. The
safe version is intended to be used for code development. It provides for bounds checking of
arrays and initialization of all declared objects. This initialization sets the value of all array
members to zero and initializes the derivative structure associated with each variable type
object. The initialization of the derivative structures can involve a fair amount of overhead,
so after a project has been debugged, the user may wish to use the optimized version of
the library. The optimized version does not provide array bounds checking or initialization
of objects. It is recommended that during the development stage of the program, the user
initialize all objects that require initialization—even though this is not necessary when using
the safe library. The project code can be easily linked with the optimized library later if
desired. If an application runs successfully using the safe library, but does not run properly
using the optimized library, there is probably an uninitialized object being used somewhere
in the code.

The names and number of libraries supplied with autodif vary from compiler to com-
piler, so check the read.me file on the distribution disk for the names of the libraries supplied
with your version of autodif.

The class member function initialize is provided for initializing all appropriate au-
todif classes. For example, to declare and initialize a dvar_matrix M, you could use the
following code fragment:

dvar_matrix M(1,20,1,30) // Creates a 20 by 30 matrix
M.initialize(); // Sets all the elements of M to 0 and initializes

// the derivative structures for M

An example of code where an object requires initialization is:

{
// . . .
dvariable u; //u is declared but not initialized
for (int i=1;i<=n;i++)
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{
u+=x[i]; // x is a vector object which was previously declared

} // This is an error for the optimized library
}

In this example, the dvariable u is declared, but not initialized. The use of the unini-
tialized u in the expression u+=x[i] is an error if the code is linked with the optimized
library. It will perform fine if the code is linked with the safe library. To use the optimized
library, this code could be rewritten as:

{
// . . .
dvariable u=0; //u is declared and initialized
for (int i=1;i<=n;i++)
{
u+=x[i]; // x is a vector object which was previously declared

}
}

The code could also be written as:

{
// . . .
dvariable u; //u is declared but not initialized
u=0; //u is initialized
for (int i=1;i<=n;i++)
{
u+=x[i]; // x is a vector object which was previously declared

}
}

It is slightly less efficient to initialize x in this way.
For the borland C++ compiler, both libraries have been compiled to enable overlays.
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Chapter 7

Input and Output

Input and output methods for the autodif class objects have been implemented by overload-
ing of the C++ stream I/O operators << and >> for all autodif classes. The so-called iostream
package, introduced in AT&T Release 2.0 of C++, is fully supported. For a detailed discus-
sion of C++ stream I/O, you should consult your C++ manual (and the appropriate header
files). In this section, we discuss extension of stream I/O to autodif class objects. Format-
ted input and output uses the standard C++ stream classes istream, ostream, ifstream,
and ofstream. In addition, unformatted (“binary”) file I/O is implemented through two
additional stream classes uostream and uistream.

7.1 Formatted stream I/O

Variables of type dvariable, dvar_array, dvar_matrix, dvector, and dmatrix may be
input or output using the standard stream operators, and formatted using the standard
manipulators. A two additional manipulators are provided to simplify selection of either
fixed point or “scientific” (e-format) notation. The use of the manipulators setw() (set
width), setprecision(), setfixed, setscientific, and endl is illustrated below.

#include <iomanip.h>
#include <fvar.hpp>

main()
{
int n = 30;
int m = 5;
gradient_structure gs;
dvar_matrix x(1, n, 1, m);
.
. // code to calculate x
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.
// e format with default width and precision
cout << setscientific << x << endl;

// fixed point format
cout << setw(13) << setprecision(3) << setfixed << x << endl;
.
.
.

}

The first output statement will produce 30 lines with five numbers per line in “scientific”
(e-format) separated by one or more blanks. The second output statement will produce a
table with 30 rows and 5 columns, with each member of x printed with a fixed decimal place,
with 3 significant figures in a field 13 bytes wide. If the manipulators are omitted, the output
will appear with the default width, precision, and format specified by the compiler, and with
each number separated by one space.

The following standard manipulators are also supported:

setf(f, ios::floatfield); // to select fixed or scientific
setf(b, ios::basefield); // to base of number
setf(a, ios::adjustfield); // to select justification of fields
// where
// f may be ios::fixed or ios::scientific
// b may be ios::dec, ios::oct or ios::hex
// a may be ios::left, ios::right or ios::internal

7.2 Error checking
Although the stream operators >> and << make it very easy to perform input or output on
the autodif container classes, it is important to remember that they do not perform any
error checking. While a complete discussion of error states for the stream classes is beyond
the scope of this manual, a brief discussion of the use of the operator ! for I/O error checking
is included. If infile is a stream object, then after any I/O operation involving infile,
!infile will be true if the operation has failed and false if the operation has succeeded. For
example:

dvector x(1,10);
ifstream infile("data"); // associate the file data with the ifstream

// object infile
if (!infile) // Check if the file has been successfully opened
{
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cerr << "Error trying to open file data\n";
exit(1); // User has decided to stop on this error condition

}

infile >> x ; // read data into the dvector x;
if (!infile) // Check if the input operation was successful
{
cerr << "Error trying to read dvector x from file data\n";
exit(1); // User has decided to stop on this error condition

}

If you neglect to put in any error checking for I/O operations, your program may very
well carry on blissfully, even though the I/O operation has failed. The symptoms of this
failure can be quite confusing and waste a lot of valuable program development time.

7.3 Unformatted stream I/O

It is often useful to store intermediate calculations in an external file. Unformatted (“binary”)
file I/O is the most rapid and space-efficient method for such operations. It is supported
through two additional stream classes uostream and uistream. These two classes are derived
classes from the ofstream and ifstream classes in the iostream package.

7.4 An example of input and output
for autodif classes

The following listing illustrates the main features of the autodif system I/O support. It also
illustrates the fill operations and C++ scoping rules to automatically destroy some variables.

#include <fvar.hpp>

// compiler specific stack length specifications
#ifdef __BCPLUSPLUS__
#include <iomanip.h>
extern unsigned _stklen = 20000;

#endif
#ifdef __ZTC__
#include <iomanip.hpp>
long _stack = 20000;

#endif
void main()
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{
int n = 20;
int m = 5;
int i, j;
{
gradient_structure gs;
dvar_matrix x(1, n, 1, m);
// compute some values for x
for (i=1; i<=n; i++)
{
x.rowfill_seqadd(i,i+1./1000.,1./1000.);
}

// display x on screen
cout << "Prior to write and read tests\n";
cout << " In default format:\n";
cout << x << endl;
cout << " In fixed point notation:\n";
cout << setw(13) << setprecision(4) << setfixed << x << endl;
cout << " In scientific notation:\n";
cout << setw(13) << setprecision(4) << setscientific << x << endl;

// write x to formatted file, read back into y and display on screen
cout << "After formatted write and read:\n";
{
ofstream f1("file1.tmp"); // open output file
if (!f1)
{
cerr << "Error trying to open file file1.tmp\n";
exit(1);

}

f1 << x; // write x to file with default format
if (!f1)
{
cerr << "Error trying to write x to file1.tmp\n";
exit(1);

}
} // f1 goes out of scope so file1.tmp is closed
{
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dvar_matrix y(1, n, 1, m);
ifstream f1( "file1.tmp"); // open input file
if (!f1)
{
cerr << "Error trying to open input file file1.tmp\n";
exit(1);

}
f1 >> y; // read back into y
if (!f1)
{
cerr << "Error trying to read y from file1.tmp\n";
exit(1);

}
cout << setw(14) << setprecision(4) << y << endl;

} // y and f1 go out of scope; file1.tmp is closed

// write x to unformatted file, read back into y and display on screen
cout << "After unformatted write and read:\n";
{
uostream f1("file2.tmp"); // open output file
if (!f1)
{
cerr << "Error trying to open unformatted output file file1.tmp\n";
exit(1);

}
f1 << x; // write x to file
if (!f1)
{
cerr << "Error trying unformatted write x to file1.tmp\n";
exit(1);

}
} // f1 goes out of scope so file2.tmp is closed
{
dvar_matrix y(1, n, 1, m);
uistream f1( "file2.tmp"); // open input file
f1 >> y; // read back into y
cout << setw(14) << setprecision(4) << y << endl;

} // y and f1 go out of scope; file2.tmp is closed
} // x and gs go out of scope
exit(0);

7-5



}

7-6



Chapter 8

Temporary Files

The autodif system saves on a stack information required to calculate the derivatives
during the evaluation of the function. The amount of information depends on the num-
ber of variables for which derivative information is required, and on the specific nature of
the computations. It is difficult to predict generally how much information will be gener-
ated. If the length of this stack exceeds a preset amount, it is stored on the disk in one or
two unformatted temporary gradient files, gradfil1.tmp and gradfil2.tmp. There is also
derivative information from “precompiled” derivative calculations, which is stored in the file
cmpdiff.tmp.

The location of these files is controlled by the dos environment strings, TMP and TMP1.
The file gradfil1.tmp will be created in the directory indicated by TMP, while the file
cmpdiff.tmp will be created in the directory indicated by TMP1. If either or both of these
strings is undefined, the current directory will be used to create the files. Greatest speed
will be achieved if the temporary files are located on a ram disk. Assuming that your ram
disk is drive E:, type set tmp=e: at the dos prompt. If gradfil1.tmp becomes too large
for your ram disk (or whatever device is specified by the TMP environment string), the rest
of the file will be stored in gradfil2.tmp on the device referred to by the dos environment
string TMP1. For example, if you have typed set tmp=e: and set tmp1=c:\temp, the first
part of the gradient information will be stored on e: (presumably a ram disk), while the
second part will be stored in the directory c:\temp. If the directory does not exist, autodif
will display an error message and retire. If either the TMP or TMP1 environment string does
not exist, autodif will create gradfil1.tmp or gradfil2.tmp in the current directory.

The temporary gradient files are normally deleted when objects of class gradient_structure
go out of scope. Abnormal termination of the program (such as by pressing Ctrl-Break or
use of the derivative checker) will cause some temporary gradient files to remain in your file
system. These files may become quite large—several Mb or more, so it is a good idea to
remove them.
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Chapter 9

Global Variables

9.1 Adjusting the autodif system global variables
The autodif system declares a number of global variables that control memory allocation
for the autodif structures. These global variables can be changed by the use of “access
functions” prior to declaring an object of type gradient_structure. For most applications,
the default values of these global variables should suffice. You will not need to worry about
them until you start building larger applications.

int NUM_RETURN_ARRAYS = 10;

This global variable determines the maximum allowable depth of nesting of functions that
return autodif variable types (see the discussion about the RETURN_ARRAYS_INCREMENT()
and RETURN_ARRAYS_DECREMENT() instructions). The default value of 10 will suffice for
almost all applications and most users will not need to concern themselves with this variable.

To increase the number to, say, 15, you should put the instruction

gradient_structure::set_NUM_RETURN_ARRAYS(15);

into your program before an object of type gradient_structure is declared to manage the
derivative calculations. If you exceed the maximum allowable depth of nesting, the message

Overflow in RETURN_ARRAYS stack---Increase NUM_RETURN_ARRAYS

will appear. This message can also occur if you have put a RETURN_ARRAYS_INCREMENT that
is not matched by a RETURN_ARRAYS_DECREMENT into one of your functions.

long int GRADSTACK_BUFFER_SIZE = 2200;

This global variable determines the number of entries contained in the buffer that, in
turn, contains the information necessary for calculating derivatives. For historical reasons,
the actual amount of memory (in bytes) reserved for the buffer is equal to the value of
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GRADSTACK_BUFFER_SIZE multiplied by the size (in bytes) of an autodif structure, grad_-
stack_entry. For 16-bit dos compilers, the size of grad_stack_entry is 28 bytes. The
default value of GRADSTACK_BUFFER_SIZE is 2200 bytes, which reserves a buffer of 28∗2200 =
61600 bytes. Since for 16-bit dos, versions of autodif buffers are limited in size to a max-
imum of 64K, 2200 is about the largest size that can be used.

If you make the value smaller (say, 500), it will free up some memory (about 50K), but
the program will execute more slowly, because it must store data on the hard disk more
often. So, this is a desperation move in a situation where you must find some more memory
for your program. To decrease the number to 500, you should put the instruction

gradient_structure::set_GRAD_STACK_BUFFER_SIZE(500);

into your program before declaring a gradient_structure object.

long int CMPDIF_BUFFER_SIZE = 32000L;

This global variable determines the size in bytes of the buffer used to contain the information
generated by the “precompiled” derivative code. To change this variable, the instruction

static void gradient_structure::set_CMPDIF_BUFFER_SIZE(long int i);

is used.

int RETURN_ARRAYS_SIZE = 50;

This global variable controls the amount of complexity that one line of arithmetic can have.
The present default value should be large enough for any conceivable purpose. It is recom-
mended that the user leave it alone.

int MAX_NVAR_OFFSET = 200;

This global variable determines the maximum number of independent variables that can be
used. In can be increased, for example, to 500, by including the instruction

gradient_structure::set_MAX_NVAR_OFFSET(500);

into your program before declaring a gradient_structure object. If you have more inde-
pendent variables than the value of MAX_NVAR_OFFSET, the error message

You need to increase the global variable MAX_NVAR_OFFSET to xxx

will appear and execution will be halted.

unsigned long ARRAY_MEMBLOCK_SIZE=100000L;
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This global variable determines the maximum amount of memory (in bytes) available for
the autodif variable type container class objects (dvar_vector, dvar_matrix, etc.). It
should be set to the largest single amount of memory required when an object of type
gradient_structure is declared. An autodif variable array object requires about 8 bytes
for each element of the array. A dvar_vector object of size 500 will require slightly more
than 4000 bytes of memory. A dvar_matrix object with 20 rows and 30 columns would
require 20× 30× 8 = 4800 bytes of memory. To provide the maximum amount of memory
for other purposes, you can reduce the size of ARRAY_MEMBLOCK_SIZE until an error message
telling you to increase ARRAY_MEMBLOCK_SIZE appears.

unsigned MAX_DLINKS = 1000;

The access function

gradient_structure::set_MAX_DLINKS(int i);

determines the maximum number of dvariable objects that can be in scope at one time.
The default value is 1000, which should be enough for most purposes. If the value is exceeded,
the message

Need to increase the maximum number of dlinks

will appear and program execution will be terminated.

Other access functions

The complete list of access functions for the autodif system global variables is:

static void set_NUM_RETURN_ARRAYS(int i);
static void set_ARRAY_MEMBLOCK_SIZE(unsigned long i);
static void set_GRADSTACK_BUFFER_SIZE(long int i);
static void set_MAX_NVAR_OFFSET(unsigned int i);
static void set_MAX_DLINKS(int i);
static void set_CMPDIF_BUFFER_SIZE(long int i);

These functions may not be used while an object of type gradient_structure is in scope.
Doing so will produce an error message and program execution will be halted.

9.2 Stack size
The size of the stack is usually controlled by a compiler-specific global variable. The default
stack size is generally too small for autodif. It is recommended that the stack size be
increased to 15000 or 20000 bytes. The autodif library routines have been compiled without
the option of checking for stack overflow, so if you do not reserve enough area for the stack,
your program will probably crash the system without any warning, or simply behave in some
strange manner.
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Stack size is set by inserting an appropriate line in the code prior to the main() block. The
following examples set the stack length to 15000 bytes. Refer to your compiler documentation
for more details.

For the Borland compiler, the appropriate syntax is:

extern unsigned _stklen = 15000;
main()
{
// ... your code

}

For the Zortech compiler, the appropriate syntax is:

unsigned int _stack = 15000;
main()
{
// ... your code

}
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Chapter 10

The autodif Function
Minimizing Routines

autodif is supplied with both a quasi-Newton function minimizer and a conjugate gra-
dient function minimizer. A quasi-Newton function minimizer is an effective method for
minimizing smooth functions of up to one or two hundred parameters. At some point, the
calculations involved in updating the inverse Hessian approximation (on the order of n3) and
the memory requirements for the inverse Hessian approximation (with n(n + 1)/2 floating
point elements), where n is the number of parameters, become prohibitive. The conjugate
gradient method, supplied with autodif, should then be used.

We have provided the user with two types of interfaces to the function minimizer routines.
The first approach provides the user with the maximum amount of encapsulation of the
minimization routine. It effectively allows the user to say, “Here is my function. Minimize
it.” The disadvantage of this approach is some loss of flexibility in managing memory and
controlling the minimization process. To provide maximum flexibility, we also provide a
lower-level interface that allows the user to exercise complete control over the minimization
process.

The fully encapsulated minimization procedure is invoked by calling the function minimize.
The following code invokes the minimize routine to find the minimum for the user’s function
userfun.

//file: minimize.cpp

#include <fvar.hpp>

double userfun(dvar_vector&);

#ifdef __BCPLUSPLUS__
extern unsigned _stklen = 20000;
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#endif
#ifdef __ZTC__
long _stack = 20000;

#endif
void main()
{
int nvar=60;
independent_variables x(1,nvar);
fmm fmc(nvar); // creates the function minimizing control structure
double minimum_value= fmc.minimize(x,userfun); //Call the function minimizer
cout << "The minimum value = " << minimum_value << "at x =\n"

<< x << "\n";
}

In this example, it is the user’s responsibility to determine the number of independent
variables nvar and to declare the array of type independent_variables that holds the
independent variables. The elements of the independent_variables array x are initialized
to zero. If other initial values are desired, the user must initialize the array as well. An
example of a typical simple function that could be minimized by this code is the code for
the function (

x[1]− 1
)2

+
i<n∑
i=1

(
x[i+ 1]− x[i]

)2
whose minimum is at the point (1, 1, . . . , 1).

// file: userfin.cpp

#include <fvar.hpp>

double userfun(dvar_vector& x)
{
dvariable z,tmp;
int min,max;
min=x.indexmin();
max=x.indexmax();
tmp=x[min]-1;
z+=tmp*tmp;
for (int i=min;i<max;i++)
{
tmp=x[i+1]-x[i];
z+=tmp*tmp;

}
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return(value(z));
}

While in the main routine, the vector of independent variables is declared to be an
object of type independent_variables, in userfun, it must be declared to be an object
of type dvar_vector. This is the autodif “array” type for which derivative information is
calculated. It corresponds to an array or vector of doubles. Also, the quantities z and tmp,
which correspond to objects of type double for which derivative information is required,
must be declared to be of type dvariable. The function value takes a dvariable as its
argument and returns a double, the value of the dvariable.

This simple implementation of the function minimizer is useful for the beginning user
who doesn’t wish to get too involved in the intricacies of autodif or who wants a quick
solution to a minimization problem. What are its disadvantages? The main disadvantage is
that the type of arguments taken by the function userfun are limited to a predefined set. In
the present case, the function userfun is declared to be a function that takes one argument
of type dvar_vector&. The line of code

double minimum_value= minimize(x,userfun);

causes a pointer to the function userfun to be passed to the function minimize. (When
a function is named without the accompanying parentheses, a pointer to the function is
generated.) Thus, the second argument of minimize is a pointer to a function that takes
one argument of type dvar_vector& and returns a double.

To enable the user to retain maximum control over memory management and the min-
imization process, the function minimizer and the function being minimized should be put
on the same level in the program. This is accomplished by putting them into a loop. The
general form of this control structure is

double f;
independent_variables x(1,nvar);
dvector g(1,nvar);
fmm fmc(nvar); // Use this declaration for the quasi-Newton function minimizer
// fmmc fmc(nvar); // Use this declaration for the conjugate-gradient function

//minimizer
gradient_structure gs;
while (fmc.ireturn >=0)
{
fmc.fmin(f,x,g);
if (fmc.ireturn > 0)
{
f=userfun(x,...) // The users function
gradcalc(nvar,g);

}

10-3



}

The dvector objects g and x must have minimum valid indices equal to 1 and maximum
valid indices equal to the number of independent variables in the minimization.

Since many parts of the code sequence are independent of the particular application,
the code segments for calling the function minimizer and evaluating the derivatives has
been made into a macro. Using the macros, BEGIN_MINIMIZATION(nvar,f,x,g,fmc) and
END_MINIMIZATION(nvar,g), the above code can be written as

double f;
independent_variables x(1,nvar);
dvector g(1,nvar);
fmm fmc(nvar); // Use this declaration for the quasi-Newton function minimizer
// fmmc fmc(nvar); // Use this declaration for the conjugate-gradient function

//minimizer
BEGIN_MINIMIZATION(nvar,f,x,g,fmc)
f=userfun(x,...) // The users function

END_MINIMIZATION(nvar,g)

The macro BEGIN_MINIMIZATION takes five arguments: the number of independent vari-
ables, the name of the object of type double that will contain the value of the function being
minimized, the independent variables, the gradient vector, and the name of the function-
minimizing control structure. The macro END_MINIMIZATION takes two arguments: the
number of independent variables and the gradient vector.

Notice that even when using the macros, it is the responsibility of the user to declare
the name of the object of type double, f, which will contain the value of the function being
minimized, the independent_variables x and the dvector g, as well as the fmm object
fmc. The quasi-Newton function minimizer fmin is controlled by, and is a member function
of, the class fmm. The constructor for the class fmm takes nvar, the number of variables,
as an argument and creates the structure fmc, which controls the minimization. The user
can control the operation of the function minimizer by changing certain values of the fmm
structure fmc. The conjugate gradient function minimizer fmin is a member function of the
class fmmc. The only difference in calling the quasi-Newton or conjugate-gradient function
minimizers is in the declaration of an object of type fmm for the quasi-Newton method, and
of type fmmc for the conjugate-gradient method. The public members of this structure are
given below.

class fmm
{
public:

// control variables:

long maxfn; // maximum number of function evaluations

10-4



// default value: maxfn = 500
double min_improve; // if the function doesn’t decrease by at least this

// amount over 10 iterations then quit.
// default value: min_improve=1.e-6

double crit; // gradient convergence criterion; fmin terminates if
// maximum absolute value of the
// gradient component is less than crit.
// default value: crit = 1e-4

long imax; // maximum number of function evaluations in linear
// search without improving the current estimate
// before fmin terminates default value : imax = 30

long iprint; // number of iterations between screen displays of
// current parameter estimates default value: iprint = 1

long scroll_flag; // set to 1 to scroll display on screen;
// 0 to overwrite screen
// default value: scroll_flag = 1

int ireturn; // used to control the loop containing fmin and the
// user’s function

}

There are five criteria by which the function minimizer may decide that convergence has
been achieved.

1. If the magnitude of all the gradient components is less than crit (default value
1.0×10−4).

2. If the maximum number of function evaluations, maxfn, is exceeded (default value
500).

3. If the function value does not decrease by more than min_improve over 10 iterations
(default value 1.0×10−6).

4. If the function minimizer tries to evaluate the function more than imax times within
one linear search (default value 30).

5. If the function minimizer detects that the user has pressed the ‘Q’ or ‘q’ key.

Here is an example of the use of these switches:

dvector g(1,nvar);
dvector x(1,nvar);
double f;
fmm fmc(nvar);
fmc.maxfn=1000; // Maximum number of function evaluations is 1000
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fmc.iprint=10; // Current best estimate will be printed out every
// ten iterations

fmc.crit=.01; // Convergence if derivatives are all smaller in
// magnitude than .01

fmc.min_improve=0.0; // This convergence criterion won’t be used
fmc.imax=0; // This convergence criterion won’t be used
gradient_structure gs;
while (fmc.ireturn >=0)
{
fmc.fmin(f,x,g);
if (fmc.ireturn > 0)
{
f=userfun(x,...) // The users function
gradcalc(nvar,g);

}
}

The function prototype for fmin is:

void fmm::fmin(double& f, independent_variables & x, dvector & g);
/*--------------------------------------------------------------------------*
* Purpose: quasi-Newton numerical minimization *
* f : current value of function to be minimized *
* x : current values of the variables over which the minimization *
* occurs; instance of class independent variables with elements *
* from 1 to n *
* g : current value of the gradient as returned by the function *
* gradcalc( ... ); instance of class dvector with elements *
* from 1 to n *
*--------------------------------------------------------------------------*/

The execution of fmin may be terminated by pressing the ‘Q’ key on the keyboard. There
may be a slight delay between the keypress and the termination of fmin.

10.1 Putting bounds on parameters
It is often necessary to put bounds on the values that a parameter can take. For example, if
the expression 1/y is to be evaluated in a program, an arithmetic error will occur if y = 0.
Similarly, ex will probably produce an error if x = 100000.

The function boundp is supplied with autodif to simplify the placing of bounds on
parameters.

dvariable boundp( dvariable x, double fmin, double fmax, dvariable& fpen)
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{
dvariable t,y;
t=fmin + (fmax-fmin)*(sin(x*1.570795)+1)/2;
if (x < 0.00001)
{
fpen+=(x-0.00001)*(x-0.00001);

}
if (x > 0.9999)
{
fpen+=(x-0.9999)*(x-0.9999);

}
if (x < -1)
{
fpen+=1000*(x+1)*(x+1);

}
if (x > 1)
{
fpen+=1000*(x-1)*(x-1);

}
return(t);

}

The function boundp constrains the variable to lie between the values fmin and fmax.
Both the values fmin and fmax can actually be attained, so if you want a variable to be
greater than zero, the code

y=boundp(x,0.0,1.0,fpen);

will not do the job. Instead, you can accomplish this in one of two ways. You can use a
quadratic transformation if you really don’t care how large x can become.

y=x*x;

You can make a decision about what is meant by “close to zero” for your application—in this
case, 0.00001:

y=boundp(x,0.00001,1.0,fpen);

The penalty function fpen is included in the boundp routine, because otherwise, the
function would have a zero derivative at its lower and upper bounds. This causes the deriva-
tive with respect to the bounded parameter to be equal to zero. The result is that if the
minimization routine is started with a parameter value already at the upper or lower bound,
then this parameter will never be changed. The penalty shifts the position of the critical
point slightly within the bounds. Of course, if the initial parameter estimate happens to
coincide exactly with this critical point, the derivative will be zero, but this is very unlikely.
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If you neglect to add the penalty function to the function being minimized, the mini-
mization routine will still work. The only problem is that you run the risk of one of the
bounded parameters getting “stuck” at its upper or lower bound.

The penalty should be added to the function that you wish to minimize. If you wish to
maximize the function (in which case you are going to change the sign of the function before
passing it to the function minimizer), then you should subtract the penalty. If you get the
sign of the penalty wrong, the routines will not work properly.

To begin the minimization, you generally know the initial value of the constrained pa-
rameter y, and you need to find the value of x that will produce this value, so you can
initialize the proper component of the vector of independent_variables with it. The func-
tion boundpin, which is the inverse function of boundp, will yield the desired value for x.

// double boundpin(double y, double fmin, double fmax)
x=boundpin(y,fmin,fmax);

10.2 The derivative checker

It may happen that the derivatives being passed to fmin become incorrect for some values
of the parameters. Two possible reasons for this are 1) an error in the internal derivative
calculations of autodif itself or 2) the use of a user’s function that is not differentiable
at the point in question. The former cause becomes increasingly less likely as experience
with autodif continues and any remaining bugs are removed. The latter can occur because
when constructing a large complicated function, it is always possible (and not uncommon,
in our experience) to add some non-differentiable components as an oversight.

If the function becomes nondifferentiable at some point or the derivative calculations are
incorrect, the function minimizer will begin to experience difficulty in making progress. To
help identify derivative errors or cases of non-differentiability when they occur, the autodif
system includes a interactive derivative checker, which compares the value of the derivatives
calculated by gradcalc() with finite difference approximations. The derivative checker
can be invoked while the function minimizer is in progress by pressing the ‘C’ key on the
keyboard.

The derivative checker operates in two modes. In the default mode, the derivative is
checked for one independent variable at a time. In this mode, you will be asked to supply
the index of the variable for which you want to check the derivative. Alternatively, if you
want to check all derivatives, enter 0 when prompted for the index of the variable to check.
Next, you will be asked to enter the step size to use for the finite difference approximation.
Enter a number which will alter the value of the of the variables to be checked in the fifth or
sixth significant digit. The derivative checker will then tabulate the values of the function,
the variable being checked, the analytical derivative (from gradcalc()), the finite difference
approximation, and the index of the variable being checked. The derivative checker may be
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interrupted by pressing the ‘X’ key on the keyboard. On completion, the derivative checker
exits to the operating system.

For many models, the finite approximations to the derivatives may change radically as
the step size used in the derivative approximation is changed. How then can one be sure
that the analytical derivatives are correct or incorrect? The following “rule of thumb” seems
to work fairly well. First, identify a gradient component that seems to be incorrect. Pick
this component as the independent variable whose derivative is to be checked. Evaluate the
finite difference approximation for different step sizes, with the step sizes differing by a factor
of about 3. Typical step sizes might be 1.e-4, 3.e-5, 1.e-5, 3.e-6,. . . Now, if the finite
difference approximations stay almost the same for two consecutive step sizes, but are very
different from the analytical approximations, this is a good indication that the analytical
derivatives are incorrect.

Frequent use of the derivative checker is advisable during development of a new applica-
tion, particularly after changes that modify the objective function.

The derivative checker may also be invoked explicitly. Its function prototype is

void derch(double & f, independent_variables & x, dvector & g,
const int n, int & ireturn);

/*--------------------------------------------------------------------------*
* Purpose: compare analytical derivative calculation with finite *
* difference approximation *
* Input: *
* f : current value of function *
* x : current values of the parameters of the function; instance of *
* class independent_variables with elements ranging from 1 to n *
* g : current value of the gradient as returned by the function *
* gradcalc( ... ); instance of class dvector with elements from *
* 1 to n *
* n : number of variables *
* ireturn : return status; set ireturn = 3 prior to first call to derch() *
* Output: *
* ireturn : return status; ireturn = 4 or 5 on return from derch() *
*--------------------------------------------------------------------------*/

The following code fragment will display the values of the function, the variable being
checked, the analytical derivative (from gradcalc()), the finite difference approximation,
and the index of the variable being checked.

#include <math.h>
#include <fvar.hpp>

// prototype for user supplied code to compute f as a function of x
void f_comp( double & f, independent_variables & x, ... );
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void main()
{
int n = ...; // number of variables in function
independent_variables x(n);
set_x( ... ); // user supplied code to set the values of x
dvector g(1,n);
gradient_structure gs;
double f = 0;
int derch_return = 3;

f_comp(f, x, ... ); // first call to get value of function for current x
while (derch_return >=3)
{
derch(f, x, g, n, derch_return);
{
f_comp(f, x, ... ); // subsequent calls for with values of x

// varied by the step size within derch()
gradcalc(n, g);

}
}

}
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Chapter 11

Statistical Functions

The principal purpose of autodif is for constructing computer programs that use mathe-
matical derivatives. One such application is in nonlinear parameter estimation, that is, the
construction of nonlinear statistical models. It is convenient to use simulations that produce
data with known statistical properties, in order to analyze the behavior of such models. To
facilitate this process, autodif is furnished with a small number of statistical functions that
can be applied to both constant and variable vector objects.

11.1 Filling vectors with random numbers

In this section, a uniformly distributed random number is assumed to have a uniform dis-
tribution on [0, 1]. A normally distributed random number is assumed to have mean 0 and
variance 1. A binomially distributed random number is assumed to have a parameter p,
where 1 is returned with probability p, and 0 is returned with probability 1 − p. The
long int& n is the random number seed specified by the user.

dvector::fill_randu(long int& n) // Fill a dvector from a uniform
// distribution on 0,1

dvector::fill_randn(long int& n) // Fill a dvector from a standard normal
// distribution

dvector::fill_randbi(int& n,double p) // Fill a dvector from a binomial
//distribution A 1 is returned with probability p
// A 0 is returned with probability 1-p

dvector::fill_multinomial(int& n,dvector p)// Fill a dvector from a
// multinomial distribution The distribution is determined by
// the dvector p. An i is returned with probability p(i) if the
// components of p sum to 1. Otherwise p is normalized so that
// its components sum to 1.

ivector::fill_multinomial(int& n,dvector p)// Fill a dvector from a
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// multinomial distribution The distribution is determined by
// the dvector p. An i is returned with probability p(i) if the
// components of p sum to 1. Otherwise p is normalized so that
// its components sum to 1.

The fill_multinomial routine expects to receive a dvector of parameters, that is,
P = (p1, . . . , pn). The routine fills the elements of a dvector with integers whose values
range from 1 to n, where i occurs with probability pi. If the components of P do not sum
to 1, they will be normalized so that the components do sum to 1.

As an example of how to use these functions, consider the following code segment, which
generates random numbers from a normal distribution contaminated with a small proportion
of large errors. This kind of distribution is useful for studying “robust” parameter estimation
procedures. Robust estimation procedures are intended to be insensitive to such deviations
from the main distribution.

Assume that the main distribution has mean 20 and standard deviation 2, while the
contaminating distribution has mean 20 and standard deviation 6. We want the probability
that the random numbers belong to the main distribution to be 0.90 and the probability
that they belong to the contaminating distribution to be 0.10. We shall generate a random
vector of 100 such random numbers.

// ...
dvector rn(1,100);
{
dvector w(1,100);
rn.fill_randn(212); // fills rn with numbers drawn from

// a normal distribution
w.fill_randbi(1521,0.90); // fills w with numbers drawn from

// a binomial distribution
for (int i=1; i<=100;i++)
{
if (w(i)==1) // This condition will occur with probability 0.90
{
rn(i)=2*rn(i)+20; // standard deviation 2 and mean 20

}
else// This condition will occur with probability 0.10
{
rn(i)=6*rn(i)+20; // standard deviation 6 and mean 20

}
}

} // Now the dvector w goes out of scope and the memory it used
// is released...
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11.2 Generating a sample from a mixture
of n2 normal distributions

This example extends the previous example to a mixture of more than two distributions. Two
interesting aspects of this example are the use of the multinomial fill of an ivector object and
the use of the resulting ivector object in a general selection of the form dvector(ivector).

int nsample; // nsample is the sample size to be generated
int n; // n is the number of groups in the mixture
dvector p(1,ngroups); // p contains the mixture proportions;
dvector mean(1,ngroups); // mean contains the mean for each group
dvector sd(1,ngroups); // sd contains the standard deviations for each group
dvector sample(1,nsample); // sample will contain the simulated data
ivector choose(1,nsample); // this will determine which group in the mixture

// each observation came from
//...
// somehow get the mixture proportions into p, the means into mean,
// and the standard deviations into sd
// ...
choose.fill_multinomial(1011,p);

sample.fill_randn(211); // fill the sample with standard normal deviates
sample=elem_prod(sd(choose),sample)+mean(choose); //This

// creates the mixture of normal distributions

Notice that the ith element of choose will be equal to j with probability pj, so each
element in the sample will have a probability pj of having mean(j) as its mean and sd(j) as
its standard deviation. This means that each element of sample will have a probability pj
of belonging to the jth group of normal distributions. It follows that the elements of sample
have the desired mixture distribution.

11.3 Functions that provide summary statistics
The functions

number mean(vector_object);
number std_dev(vector_object);

return the mean and standard deviation of a dvector or dvar_vector.
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Chapter 12

Robust Nonlinear Regression

Many authors have indicated that the usual method of least-squares estimation of parameters
is too sensitive to the existence of a small number of large errors, so-called outliers, in the
data being analyzed. Although an extensive theory of robust estimators that are not so
sensitive to such outliers has developed, many people still use standard statistical packages
based on least-squares estimation for statistical problems such as multiple regression. With
the autodif system, it is a simple matter to use superior robust-regression estimation
procedures on both linear and nonlinear statistical models. We should emphasize that we
are not experts in the field of robust regression and we make no claims of optimality or near
optimality for these methods. The methods in this chapter seem to work well and they have
been designed so that they can be easily extended to large nonlinear regression problems with
thousands of observations, and at least hundreds (and perhaps thousands) of parameters.
(In 16-bit dos versions of autodif, the 64K barrier may limit the size of the problem that
can be considered.)

Our purpose in this chapter is to present an estimation procedure that performs almost
as well as the usual least-squares estimator when the model errors are normally distributed,
and that performs much better than least squares when the model errors contain some large
outliers. With such an estimator, you don’t have to worry about whether the use of robust
techniques is justified. If your model errors are exactly normally distributed, you have lost
very little, and if they are not normally distributed, you may have gained a lot.

The reader who is not interested in the derivation of the formulas in this section can
skip to Section 12.2, where the methods for using the routines are discussed. The necessary
functions are supplied with the autodif libraries.
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12.1 Statistical theory for robust regression
Assume that we have n data points, Yi, i = 1, . . . , n. The Yi are assumed to have been
produced by the process

Yi = f(xi; Θ) + εi (12.1)

where for each i, xi is a known vector, Θ is an unknown vector of parameters, and the εi are
random variables. We want to get estimates for the parameters Θ. Some common special
cases are:

Multiple regression: for each i, xi = (xi1, . . . , xir) is an r-vector and Θ = (θ0, θ1, . . . , θr)
is an (r + 1)-vector. The functional relationship is

f(xi; Θ) = θ0 + xi1θ1 + xi2θ2 + · · ·+ xirθr

Polynomial regression: for each i, xi = (xi) is a 1-vector and Θ = (θ0, θ1, . . . , θr) is an
(r + 1)-vector. The functional relationship is

f(xi; Θ) = θ0 + xiθ1 + x2i θ2 + · · ·+ xri θr

A nonlinear model: For a simple nonlinear model, we shall consider the case where xi
is a 1-dimensional vector and Θ is a 1-dimensional vector whose single component is
denoted by b. The functional relationship is

f(xi; b) = bxi + b2 (12.2)

The form of the estimation procedure that should be used to estimate the parameter
vector Θ depends on the assumptions that are made about the nature of the random vari-
ables εi. Assume that the εi are independent identically distributed random variables with
a probability density function φ(u; Λ), where Λ is a vector of parameters whose components
may be known or unknown.

The joint probability density function for the (Y1, . . . , Yn) is given by

n∏
i=1

φ
(
Yi − f(xi; Θ); Λ

)
(12.3)

Taking the logarithm of equation (12.3) gives the expression

n∑
i=1

log
(
φ
(
Yi − f(xi; Θ); Λ

) )
(12.4)

Considered as a function of the parameters Θ and Λ, expression (12.4) is known as the
log-likelihood function. The maximum likelihood estimates for the parameters Θ and Λ are
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the values of parameters that maximize the likelihood or its equivalent, the log-likelihood
function.

If we assume that the εi are normally distributed with mean 0 and standard deviation σ,
then

φ(u; Λ) =
1√
2πσ

exp

(
− u2

2σ2

)
and the log-likelihood function becomes

− n log(σ)− 1

2σ2

n∑
i=1

(
Yi − f(xi; Θ)

)2 (12.5)

In this case, Λ = (σ) is a 1-dimensional vector.
The maximum likelihood estimates Θ̂ for the parameters Θ that maximize equation (12.5)

are the same as the those values of the parameters that minimize
n∑
i=1

(
Yi − f(xi; Θ)

)2 (12.6)

Since these parameter estimates minimize the squared difference between the predicted and
observed values, they are known as the least-squares estimates. For normally distributed
model errors, the maximum likelihood estimates and the least-squares estimates coincide.
Since the expression (12.6) does not depend on σ, the maximum-likelihood estimate for Θ
does not depend on the estimate for σ. This is a special property shared by the normal
distribution and some other distributions. It is does not hold in general. The maximum
likelihood estimate σ̂ for the standard deviation σ is given by

σ̂ =

√√√√ 1

n

n∑
i=1

(
Yi − f(xi; Θ)

)2 (12.7)

The reason that the normal least-squares estimation is so sensitive to outliers is that the
normal distribution has a small “tail,” so the probability of occurrence of an event drops off
very quickly as one moves away from the mean a distance of a few standard deviations. One
approach to develop more robust estimation methods is to use distributions with fatter tails.
A distribution with a fatter tail than the normal distribution’s is the double exponential
distribution whose probability density function (assuming the mean is 0) is given by:

1

2σ
exp

∣∣∣−u
σ

∣∣∣ (12.8)

The corresponding log-likelihood function is

− n log(σ)− 1

σ

n∑
i=1

∣∣Yi − f(xi; Θ)
∣∣ (12.9)
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The values of the parameters Θ that maximize equation (12.9) are the same as the values
that minimize the sum

n∑
i=1

∣∣Yi − f(xi; Θ)
∣∣ (12.10)

Since equation (12.10) is the total absolute deviation between the predicted and observed
values, these estimates are known as the minimum total absolute deviation estimates for the
parameters.

While the minimum total absolute deviation estimates are fairly insensitive to a small
number of large model errors, they do not perform very well when the model errors are
normally distributed. To develop a maximum likelihood estimation procedure that is less
sensitive to outliers, but that also performs well when the model errors are normally dis-
tributed, we have employed a distribution that is a mixture of a normal distribution and
another distribution with a fatter tail. The probability density functions of the fat-tailed
distribution is given by: √

2

πσe

{
1 +

x4

(σe)4

}−1

(12.11)

The extra parameter e has been added to the log-likelihood function (12.11) to adjust the
“spread” of the fat-tailed distribution. The value of e has been set equal to 3. A mixture of two
random variables with mixing proportion p is formed by choosing one of the random variables
with probability p and the other random variable with probability 1− p. If the probability
density functions of the mixture components are ψ(u) and χ(u), then the probability density
function of the mixture is pψ(u) + (1− p)χ(u). We shall assume that the model errors εi are
a mixture of the distribution (12.11) with probability 0.05 and a normal distribution with
probability 0.95. The quantity 0.05 can be interpreted as the proportion of observations
contaminated by large errors.

The corresponding log-likelihood function for the observations is

−n ln(σ) +
n∑
i=1

log n

[
(1− p) exp

{
−
(
Yi − f(xi; Θ)

)2
2σ2

}

+
2p√
πe

{
1 +

(
Yi − f(xi; Θ)

)4
(eσ)4

}−1
]

(12.12)

The parameter estimates Θ̃ and σ̃ for Θ and σ, obtained by maximizing equation (12.6),
will be referred to as the “robust-mixture estimator” for the parameters. For the robust-
mixture estimator, the estimate for Θ is not independent of the estimate for σ, so to estimate
the parameters, the entire expression (12.12) must be maximized for Θ and σ simultaneously.

While it is true that the robust parameter estimates are the values of the parameters that
maximize equation (12.12), it is possible to reformulate the problem slightly so it is posed
in terms of parameters more easily estimated. Such reparameterizations are often useful in
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nonlinear optimization. Consider the log-likelihood function (12.12). If p is set equal to
zero, the log-likelihood reduces to the normal case, expression (12.5). So, the value of the
parameter σ that would maximize equation (12.12) when p = 0 is σ̂, given by equation (12.7).

Define a new parameter α by α = σ/σ̂ such that σ = ασ̂. Replace the parameter σ in
equation (12.12) by the parameter ασ̂. The log-likelihood function now takes the form

n ln(ασ̂)−
n∑
i=1

log

[
(1− p) exp

{
−
(
Yi − f(xi; Θ)

)2
2(ασ̂)2

}

+
2p√
πe

{
1 +

(
Yi − f(xi; Θ)

)4
(eασ̂)4

}−1
]

(12.13)

The parameter α can be interpreted as an estimate of how much of the residuals in the
model fit are contributed by the large outliers generated by the contaminating distribution.
If α is close to 1, most of the contribution to the residuals comes from the “ordinary” errors
associated with the normal distribution. If α is close to 0, most of the contribution to the
residuals comes from the large outliers associated with the fat-tailed distribution. We expect
that the maximum likelihood estimate α̃ for α will lie between 0 and 1. The parameter α
can also be interpreted as a “cutoff” switch. As α is made smaller, the influence of the larger
residuals on the parameter estimates will be reduced. This is much like looking at the data
and removing the data points that fit the model badly. in robust regression

The code for the log-likelihood function (12.13) can be written down very concisely using
autodif’s vector operations. Suppose that the observations Yi are contained in a dvector
called obs, and the predicted values f(xi; Θ) are contained in a dvar_vector called pred.
The vector of residuals Yi − f(xi; Θ) and the vector of squared residuals can be calculated
in two statements:

dvar_vector diff = obs-pred; // These are the residuals
dvar_vector diff2 = pow(diff,2); // These are the squared residuals
v_hat = mean(diff2);

The estimate of the variance is given by the mean of the vector of squared residuals. If
b = 2p/

√
πe and a2 = 2α, the code for equation (12.13) can be written as

dvariable log_likelihood = 0.5*diff.size()*log(a2*v_hat)
-sum(log((1.-pcon)*exp(-diff2/(2*a2*v_hat))
+ b/(1.+pow(diff2/(a2*v_hat),2))));

While the combination of scalars and vectors in statements like 1.+v can seem a bit
strange at first, one quickly gets used ot it. The main thing to consider is that some com-
binations of operations are not associative, so it may be necessary to include parentheses to
ensure that the operations are carried out in the correct order. As is often the case, using
vector operations instead of writing the code in terms of the components of the vector objects
will greatly reduce the amount of temporary storage required.
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As the examples below illustrate, the parameter α is often not well-determined by the
data. Rather than estimating this parameter directly, we feel that the best way to do robust
regression is probably to use a fixed value for α. We recommend the value 0.7 for fitting the
model, although we have no strong reason for preferring this particular value.

12.2 Using the autodif robust
nonlinear regression routines

The autodif system permits the user to obtain these robust regression estimates in a
simple fashion. Suppose that the observations Yi are contained in a dvector called OBS_Y
and that the values predicted by the model for these observations have been computed and
are contained in a dvar_array called PRED_Y. To compute the value of the log-likelihood
function (12.6) with a fixed value of α, the routine robust_regression is used. The function
prototype for this routine is:

dvariable robust_regression(dvector& OBS_Y,dvar_vector& PRED_Y,double& alpha);

The function robust_regression returns minus the value of the log-likelihood function.
(The sign has been changed for the function minimizer.)

To estimate the parameter α as well, the parameter must be passed as a dvariable. The
function prototype is

dvariable robust_regression(dvector& OBS_Y,dvar_vector& PRED_Y,dvariable& alpha);

For the routine robust_regression to work properly when the parameter α is being
estimated, it is necessary to put bounds on the values that α can assume. This is done by
using the boundp function supplied with autodif. The parameter α must be restricted such
that 0 < a <= 1. (Actually, the upper bound is not necessary, but it will make the routine
run a bit more efficiently.) The code

a=boundp(x(i),.001,1.0,zpen);

restricts the value of α to lie within 0.001 and 1.0. To find the initial value that will give a
desired initial value for α, the inverse function boundpin can be used. To obtain the initial
value that gives a value of 0.7 for α, and to put the initial value in the ith component of the
vector of independent variables x, the code

x(i)=boundpin(0.7,001,1.00);

would be employed.
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12.3 A simple example of robust regression
We shall fit a simple 1-parameter model using the robust regression routine robust_regres-
sion, which estimates the value of the parameter α. The form of the model is

Yi = bZi + b2

where the true value of b is 5. The data for this example were produced by simulating
18 real data points with normally distributed errors with mean 0 and standard deviation
40, then adding two outliers that were 3.1 standard deviations and 6 standard deviations
removed from the true value. Of course, such large outliers could be identified by eye in
this simple example. For large nonlinear models, however, there is often no simple graphical
representation of the fit that can enable such a simple inspection of the residuals. A small
circle (◦) was used to mark the outliers. The results of the fitting procedure are shown in
Figure 12.1 The least-squares fit with the outliers removed (estimated b = 4.45) is the closest
to the true relationship. It represents the best estimates that can be obtained if the outliers
are identified with certainty. The robust fit including the outliers (estimated b = 4.06) did
considerably better than did the least-squares fit including the outliers (estimated b = 3.51).

For the robust fit, the estimate of σ̂ is 70.1, while the estimate of σ̃ is 55.6. So, the
estimate of α is 0.79. Since the real value of σ was 40.0, the robust regression routine has
underestimated the contribution to the residuals made by the outliers.

The autodif code for this model is given below:

// file: robust.cpp

#include <fvar.hpp>

// function prototype
double fcomp(dvector& OBS_Y,dvector& OBS_Z,dvar_vector& x);

#ifdef __BCPLUSPLUS__
extern unsigned _stklen = 20000;

#endif
#ifdef __ZTC__
long _stack = 20000;

#endif
double alpha;
void main()
{
ifstream infile("robust.dat"); // robust.dat contains the observed data
if(!infile) // Check for I/O error
{
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cerr << "Error trying to open the file robust.dat\n";
exit(1);

}
int nobs; // nobs is the number of observations
infile >> nobs; // read in the number of observations
if(!infile) // Check for I/O error
{
cerr << "Error reading number of observations from the file robust.dat\n";
exit(1);

}
dvector Y(1,nobs);
dvector Z(1,nobs);
// The Data are in the file in the form one Y_i Z_i pair per line
{ // Limit the scope of the matrix tmp
dmatrix tmp(1,nobs,1,2);
infile >> tmp; // Read the Y_i Z_i pairs into tmp
if(!infile) // Check for I/O error
{
cerr << "Error reading data in from the file robust.dat\n";
exit(1);

}
Z=extract_column(tmp,1); // Put the first column of tmp into Z
Y=extract_column(tmp,2); // Put the second column of tmp into Y

} // Now tmp goes out of scope
infile.close(); // Close the input file
double b=1.0; // This is the model parameter ... use 1.0 as initial value
alpha=0.7; // alpha is not used in the first stage of the minimization
double f;
gradient_structure gs;
{
int nvar=1; // There is 1 parameter, b
independent_variables x(1,nvar);
dvector g(1,nvar);
x[1]=b; // Put the model parameters in the x vector
fmm fmc(nvar);
fmc.iprint=1;
fmc.crit=1.e-6;
while (fmc.ireturn >=0)
{
fmc.fmin(f,x,g);
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if (fmc.ireturn > 0)
{
{
f=fcomp(Y,Z,dvar_vector(x));

}
gradcalc(nvar,g);

}
}
cout << " The estimate for b = " << x(1) << "\n";

}
}

// file: fcomp_r.cpp

#include <fvar.hpp>

double fcomp(dvector& Y,dvector& Z,dvar_vector& x)
{
dvariable b;
b=x[1]; //Put the x vector into the model parameter
dvar_vector PRED_Y=b*Z+b*b; //calculate the predicted response
double alpha=0.7;
dvariable tmp =robust_regression(Y,PRED_Y,alpha);
return(value(tmp));

}

// file: newreg2.cpp

#include <fvar.hpp>

dvariable robust_regression(dvector& obs,
dvar_vector& pred, dvariable& a)

{
if (obs.indexmin() != pred.indexmin()

|| obs.indexmax() != pred.indexmax())
{
cerr << "Index limits on observed vector
<< "are not equal to the Index\n
<< "limits on the predicted vector in
<< "robust_reg_likelihood function\n";

}

12-10



RETURN_ARRAYS_INCREMENT(); //Need this statement because the function
//returns a variable type
dvariable v_hat;
double width=3.0;
double pcon=0.05;
double width2=width*width;
dvariable a2;
a2=a*a;
dvar_vector diff = obs-pred; // These are the residuals
dvar_vector diff2 = pow(diff,2); // These are the squared residuals
v_hat = mean(diff2)+1.e-80;
double b=2.*pcon/(width*sqrt(PI)); // This is the weight for the
// "robustifying" term
// Use vector calculations to do the entire log-likelihood function in
// two statements
dvariable log_likelihood = -sum(log((1.-pcon)*exp(-diff2/(a2*v_hat))
+ b/(1.+pow(diff2/(width2*a2*v_hat),2))));

log_likelihood += 0.5*diff.size()*log(a2*v_hat);
RETURN_ARRAYS_DECREMENT(); // Need this to decrement the stack increment
// caused by RETURN_ARRAYS_INCREMENT();
return(log_likelihood);

}

12.4 Setting the cutoff point in the
robust regression routines

It is important to be able to specify the ratio σ̃/σ̂, because this parameter is often not
well determined by the data. In the previous example, the robust estimation procedure has
somewhat underestimated the contribution to the overall variance of the residuals made by
the outliers. Now consider the analysis for the same data as above—with one change. The
value of the second outlier has been set equal to −75.0, rather than −125.0. Although this
represents an improvement in the quality of the data set, the parameter estimates (estimated
b = 3.80) for the robust-mixture estimation procedure when the parameter α is estimated are
actually worse than before. The reason for this is that the estimation of the ratio α = σ̃/σ̂
has increased to 0.94, which means that the robust estimation procedure no longer recognizes
that there are outliers in the data. The robust-mixture estimates to the data for which the
ratio σ̃/σ̂ has been fixed at 0.7 (estimated b = 4.20) is included. This is considerably better
than the least-squares fit (estimated b = 3.70).

We suspect that a little “robustness” is much better than none at all, and that overall
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best performance of the model may be obtained by simply fixing the value for the ratio σ̃/σ̂
at some nominal value, such as 0.7.

12.5 A Monte Carlo evaluation
of the robust regression routine

While the above example is indicative of the superiority of the robust-mixture estimator,
it only indicates how the estimators perform in one special case. From a statistical point
of view, one is interested in the average performance of the estimators for many different
realizations of the data. This section describes the results of such an investigation. The data
were fit by the least-squares estimator, the minimum total absolute deviation estimator, and
the robust-mixture estimator (with fixed a = 0.7).

For each simulation, a set of 30 pairs (Yi, zi) were generated, where zi = i, for i = 1, . . . , 30,
and

Yi = bzi + b2 + εi

The parameter b was set equal to 5. For the case of normally distributed model errors,
the εi are normally distributed random variables with standard deviation 40. For model
errors exhibiting moderate deviations from normality, the εi were a mixture of normally
distributed random variables with standard deviation 40, with probability 0.90, and normally
distributed random variables with standard deviation 120, with probability 0.10. For model
errors exhibiting large deviations from normality, εi were a mixture of normally distributed
random variables with standard deviation 40, with probability 0.90, and normally distributed
random variables with standard deviation 200, with probability 0.10.

Five hundred replications were made for each of the error distributions. For all the
simulations, the value of ratio α was kept fixed at 0.7 for the robust-mixture estimator.
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Figure 12.3: Plot of Robust-mixture es-
timates absolute error vs. Least-squares
estimates absolute error.

Now it is known that for normally distributed
errors, the usual least-squares estimates are the
minimum variance unbiased estimates of the
model parameters. It follows that if the robust
estimates are unbiased, they must have greater
variance than the least-squares estimates. This
greater variance is the penalty we must pay for
using robust estimates in the case where they
are not necessary. For the problem studied here,
however, the standard deviation of the robust es-
timates was only about 8% greater than the least-
squares estimates for the case of normally dis-
tributed errors, while the robust-mixture estima-
tor had a standard deviation about 20% smaller
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than that of the least-squares estimates for mod-
erate deviations from normality, and about 35%
smaller for large deviations from normality.

Normal errors Moderate deviations Large deviations

Mean LS RM MD LS RM MD LS RM MD
Mean 5.01 5.01 5.00 4.99 5.01 5.01 4.98 4.99 5.01
Std Error 0.012 0.013 0.015 0.016 0.014 0.016 0.023 0.015 0.016
Std Dev 0.26 0.28 0.33 0.36 0.30 0.36 0.51 0.33 0.36
% improvement -0.077 -0.27 20.0 0.00 35.3 29.4

Table 12.1: Comparison of the least squares (LS), minimum total absolute deviation (MD),
and robust-mixture (RM) estimates for b in the model Y = bz + b2. The true value was
b = 5.0

All three estimators appear to be unbiased.
The standard deviation of the least-squares estimates almost doubles as we go from the
normal errors to errors with large deviations from normality. The robust-mixture estimator
exhibits much greater stability. The minimum total absolute deviation estimator performs
almost as well as the robust-mixture estimator when there are large outliers present, but does
not perform very well for normally distributed errors or for medium-sized outliers present.

Another way to compare the performance of the robust-mixture estimator over the least-
squares estimator is illustrated by Figure 12.3. The absolute value of the difference between
the robust-mixture estimator for b and the actual value of b is plotted against the absolute
value of the difference between the least-squares estimator for b and the actual value of b.
For points that lie below the diagonal line, the robust-mixture estimator has smaller absolute
error than the least-squares estimator. The plot is for the large-deviations set of simulations.

12.6 Investigating extremely bad data
with the robust-mixture estimator

While the errors in the data in the previous examples exhibited moderate and large deviations
from normality, the data were not really “bad.” A much more difficult problem for parameter
estimation is created if all the large errors are concentrated on one side of the true line. To
compare the estimation methods for this kind of “bad” data, we generated a data set where
the majority (30 data points) of the data are distributed around the line y = x, with the
outliers (20 data points) distributed around the point (6,2). The data were fit with the
2-parameter linear model

Y = a+ bx
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Figure 12.4

where the true values were a = 0.0 and b = 1.0.
Various fits to the data are shown in Figure 12.4. When the value of α is set equal to 0.1,

the estimation procedure completely ignores the 20 outliers. We anticipate that varying the
value of α, noting whether the residuals suddenly shift, could be a useful way to detect
these types of outliers in large nonlinear models. Of course, in a large model, it is not
always possible to view the results in this simple way. One way to examine how the vector
of residuals is changing is to calculate the Euclidean distance between the vectors. If the
residuals are changing slowly, the distance between the residuals should be small. A sudden
shift in the residuals should manifest itself in a large distance between the vectors.

Table 12.2 shows the distance between the vectors of residuals for different values of α. It
is clear that there are two groups, one group for values 0.9 > α > 0.4 and another group for
0.3 > α > 0.1. Constructing such a table could be a possible way to search for “interesting”
structure in the outliers in a large nonlinear model.
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α 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.9 0.0
0.8 0.3 0.0
0.7 1.0 0.6 0.0
0.6 1.9 1.6 0.9 0.0
0.5 2.7 2.4 1.7 0.7 0.0
0.4 3.4 3.1 2.4 1.5 0.7 0.0
0.3 11.6 11.9 12.5 13.4 14.1 14.7 0.0
0.2 14.0 14.3 14.9 15.8 16.5 17.1 2.4 0.0
0.1 15.9 16.2 16.9 17.7 18.4 19.0 4.3 1.9 0.0

Table 12.2: Euclidean distance between the vectors of residuals for the robust-mixture esti-
mator for different values of α.
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Chapter 13

Problems with More than
One Dependent Variable

13.1 Using more than one dependent variable

’Till now, all the problems considered have had only one dependent variable. Many problems
of interest, such as the problem of solving a system of nonlinear equations, require the
computation of derivatives with respect to more than one dependent variable.

The operator << has been overloaded to implement more than one dependent variable.
The user simply writes something like

u << -exp(x(1))+y; // u is a dependent variable

where u is a dvariable and will become a dependent variable for which derivatives can be
calculated. The operator << acts like the equals sign (=), with the additional property that u
is made a dependent variable. Of course, it is possible to use u in later calculations, such as

u << -exp(x(1))+y; // u is a dependent variable
// ...
v << u*u; // v is a dependent variable

The process of declaring dependent variables in this way is global—that is, it does not
have to be done in one function. The dependent variables are ordered in the order in which
they are encountered when the code is executed.

The default maximum number of dependent variables (which is at least 10) depends on
the implementation of autodif you are using. If desired, it can be increased by using the
static member function

gradient_structure::set_NUM_DEPENDENT_VARIABLES(int i);

For example, to set the maximum number of dependent variables to 25, you would put
the lines
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gradient_structure::set_NUM_DEPENDENT_VARIABLES(25);
// ... must occur before the gradient_structure declaration
gradient_structure gs;

into your code. The derivatives are calculated by calling the function

jacobcalc(int\& nvar,dmatrix\& jac)

The derivatives are put into the dmatrix called jac. The minimum valid row index of
jac must be 1, while the maximum valid row index must be greater than or equal to the
number of dependent variables. Each row of jac must have a minimum valid index of 1
and a maximum valid index greater than or equal to nvar, where nvar is the number of
independent variables.

13.2 Finding roots of systems of
equations with Newton-Raphson

Suppose that you wish to solve the nonlinear system of equations

f1(x1, . . . , xn) = 0

f2(x1, . . . , xn) = 0

f2(x1, . . . , xn) = 0 (13.1)
...

fn(x1, . . . , xn) = 0

In general, this is a very difficult problem. However, under suitable regularity conditions,
if you can find an initial estimate for (x1, . . . , xn) that is close enough, then the iterative
Newton-Raphson technique will efficiently converge to the solution. Let X denote the vector
(x1, . . . , xn). Let

J(X) =
∂fi(X)

∂xj

be the Jacobian matrix. Then to first order,

f(X + δ) = f(X) + J(X)δ, (13.2)

where f(X) denotes the vector f1(X), . . . , fn(X) and J(X)δ denotes the multiplication of
the vector δ by the matrix J(X). Equating (13.2) to zero and solving for δ yields

δ = −J(X)−1f(X) (13.3)
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Now we proceed iteratively. If X(r) is the current estimate for X, let

X(r+1) = X(r) + δ

be the next estimate where δ is defined by (13.3).

13.3 Implementation of the Newton-Raphson technique

This example shows the Newton-Raphson technique for two equations.

// file: newt.cpp

#include <fvar.hpp>

// function prototypes for user functions
dvector function(dvar_vector& x,int nvar);
#ifdef __BCPLUSPLUS__
extern unsigned _stklen = 20000;

#endif
#ifdef __ZTC__
long _stack = 20000;

#endif
void main()
{
int nvar=2;
independent_variables x(1,nvar);
dvector f(1,nvar);
dmatrix jacobian(1,nvar,1,nvar);
gradient_structure gs;
x[1]=1;
x[2]=2;
do // Iterate until the norm of the dvector f is < 1.e-12
{
f=function(x,nvar);
jacobcalc(nvar,jacobian); // calculate the derivatives for the
// dependent variables
cout << " The x vector = " << x << endl

<< " The function values = " << f << endl << endl;
x-=inv(jacobian)*f; // This is the Newton-Raphson step

}
while (norm(f)>1.e-12);
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// print out some final statistics
cout << " Final x vector values = " << x << endl

<< " Final function values = " << f << endl
<< " Final jacobian matrix value = " << jacobian(1) << endl
<< " " << jacobian(2) << endl;

cout << " The angle between the rows of the jacobian = "
<< acos(jacobian(1)*jacobian(2)

/(norm(jacobian(1))*norm(jacobian(2))))
*180/PI << " degrees" << endl;

cout << " Final inverse jacobian matrix value = "
<< inv(jacobian)(1) << endl
<< " "
<< inv(jacobian)(2) << endl;

}

dvector function(dvar_vector& x,int nvar)
{
double offset=.0001; // try changing offset a bit to see how

// unstable the roots are
dvar_vector f(1,nvar);
dvariable z,tmp;
f[1] << 100*x[1]*x[1]+x[2]*x[2]-1.; // << sets the value of the first

// dependent variable
// now use the first dependent variable in calculation for the
// second dependent variable

f[2] << f[1]+offset-.01*pow(x(2)*x(2),2)+.0001*pow(x(1)*x(1),2);
return value(f);

}

We have chosen a rather “degenerate” example where the Jacobian matrix is almost
singular at the solution. The two functions are

f1(x1, x2) = 100x21 + x22 − 1

f2(x1, x2) = 100x21 + x22 − 1 + .0001− .0001x41 + .01x22

The calculation of the Jacobian and the Newton-Raphson “update” step can be accom-
plished with two lines of code:

jacobcalc(nvar,jacobian)
x-=inv(jacobian)*f

The iteration continues until the norm of the dvector called f is less than 1.0×10−12.
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The only variable types occur in the user’s function function. All the arithmetic for the
Newton-Raphson update is done with vectors and matrices that are of constant type. The
value function is used to turn the dvar_vector called f in function into a dvector object,
so it can be returned to the calling routine.
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Chapter 14

A Complete Nonlinear Parameter
Estimation Program

A major difference between linear and nonlinear statistical modeling is the inherent instabil-
ity of nonlinear models. It seems to be an empirical fact that for any reasonably complicated
model, if you simply write correct naive computer code for estimating the parameters, the
program will not work. By “work,” we mean you need to get the information you want out
of the data you are trying to analyze. In general, there are two reasons for this behavior:

1. The function being calculated is numerically unstable, so a zero divide or a floating
point overflow will occur. For example, calculate 1/x when x has the value 0, or
calculate exp(x) when x has the value 90000.

2. The “correct” values of the parameter estimates occur at a local minimum of the ob-
jective function, not at a global minimum.

The problem we consider in this chapter exhibits both kinds of pathology mentioned
above. We will describe the techniques necessary for producing a stable, controllable non-
linear parameter estimation routine for solving this problem. The code for this example is
included on the autodif distribution disk.

14.1 Finite mixture problems
Consider a set of m random variables Xj, indexed by j, with probability density func-
tions Fj(x). A new random variable Y can be created from the Xj as follows. A realization
of Y is produced by first picking one of theXj at random, with probability pj, and then taking
a realization of the resulting Xj. The random variable Y is a finite mixture of the Xj, with
mixing proportions pj. The probability density function for Yj is given by

∑m
j=1 pjFj(x). The

particular finite mixture that we shall address is a mixture of normal distributions. Effective
techniques for estimating parameters for this problem were first considered by Hasselblad [3].
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Assume that Xj is normally distributed with mean µj and standard deviation σj. The
probability density function for Xj is given by

1√
2πσj

exp

(
−(x− µj)2

2σ2
j

)
while the probability density function for the mixture Y is given by:

m∑
j=1

pj√
2πσj

exp

(
−(x− µj)2

2σ2
j

)
Now suppose that we are given a vector (y1, . . . , yn) of n realizations of the random variable Y .
We wish to use the information in the yi (and any other auxiliary information that may be
at our disposal) to estimate the parameters pj, µj, and σj.

In general, there are many kinds of auxiliary information that may be present in such
mixture problems. For example, we may or may not know the number of groups present in
the mixture. We may know some or all of the means, µj, or we may have some knowledge
of the approximate value of some or all of the µj. We may know the value of some or all of
the σj, or we may know that all the σj have the same value. A general routine for estimating
the parameters in mixture problems should be able, as much as possible, to incorporate
auxiliary information about the parameters into the estimation process.

The maximum likelihood estimates for the parameters are found by finding the correct
local maximum of the log-likelihood function

max
p,µ,σ

{
n∑
i=1

log

[
m∑
j=1

pj√
2πσj

exp

(
−(yi − µj)2

2σ2
j

) ]}
(14.1)

subject to any constraints on the parameters that may be appropriate for the problem.
For mixtures of normal distributions, the correct solution never occurs at the global

maximum of the log-likelihood function when there is more than one group in the mixture.
This is due to the fact that it is always possible to make the log-likelihood function as large
as desired, by setting the mean of one of the groups equal to the value of an observation
and letting the corresponding standard deviation parameter tend to zero. The value of the
probability density function for this group will then tend to infinity at the point in question.
It follows that to find the correct solution, the values of the standard deviations should be
bounded away from zero.

The following code calculates the likelihood function corresponding to equation (14.1).
Notice that none of the constraints that we intend to place on permissible parameter values
appears in the code. The constraint conditions will be implemented elsewhere. Avoiding
them at this stage produces a clean piece of code that can easily be seen to correspond to
equation (14.1). The constant terms 1/

√
2π have been ignored.
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// file: like.cpp

#include <fvar.hpp>
#include "mixture.h"

dvariable log_likelihood(dvector y,dvar_vector p,dvar_vector& mu,
dvar_vector& sd)
{
dvariable like_fun=0.;
int nobs=y.size();
int ngroups=p.size();
dvar_vector v=elem_prod(sd,sd); // Calculate the variances
dvariable sum;
dvariable diff;
for (int i=1;i<=nobs;i++)
{
sum=0.;
for (int j=1;j<=ngroups;j++)
{
diff=y(i)-mu(j);
sum+=p(j)/sd(j)*exp(-diff*diff/(2.*v(j)));

}
like_fun+=log(sum+1.e-20); // Likelihood contribution

// for i-th observation
}
return(like_fun);

}

The term 1.e-20 is put in to improve the numerical stability of the program. The routine
log_likelihood is intended to be used with a function-minimizing routine to estimate the
parameters. In the course of such a process, the function minimizer invariably will pick
some parameters that fit certain observations extremely badly. An extremely bad fit is
characterized by the value of diff being large for all groups. As a result, due to floating
point underflow, exp(−diff ∗ diff/(2. ∗ v(j))) can be equal to zero for all groups, so sum
has the value zero. Taking the logarithm of 0 would cause a floating point exception or error.
Adding the small value 1.e-20 allows the program to carry on gracefully.

It should be noted that Hasselblad grouped the observed data into size classes and an-
alyzed the grouped data. This can easily be done—and should be done—if the number of
observations is large, because the analysis of the grouped data can be much faster.
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14.2 Putting bounds on parameter values

The function minimizer routine deals with a vector x of numbers. The likelihood calculation
routine log_likelihood deals with vectors of proportions, means, and standard deviations.
We need a routine to “put” the xs into the model.

//file: reset.cpp

#include <fvar.hpp>
#include "mixture.h"

dvariable reset(ivector& control,dvar_vector& x,dvar_vector& p, dvar_vector& mu,
dvar_vector& sd,dvector& mumin, dvector& mumax, dvector& sdmin,
dvector& sdmax)

{
dvariable zpen=0.;
int ngroups=p.size();
int ii=1;
if (control(1)>0) // control(1) determines whether the p’s are active
{
for (int j=1;j<=ngroups;j++)
{
p(j)=boundp(x(ii++),0.,1.,zpen);

}
}
if (control(2)>0) // control(2) determines whether the mu’s are active
{
for (int j=1;j<=ngroups;j++)
{
mu(j)=boundp(x(ii++),mumin(j),mumax(j),zpen);

}
}
if (control(3)>0) // control(3) determines whether the sd’s are active
{
for (int j=1;j<=ngroups;j++)
{
sd(j)=boundp(x(ii++),sdmin(j),sdmax(j),zpen);

}
}
return(zpen); // Return zpen so it can be added to the function being

// minimized
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}

The function reset not only puts the xs into the parameters of the function like_fun,
it also determines what parameters are active (being estimated at the time), by examining
the ivector control, and puts constraints on the values of the parameters through the
function boundp. The function
dvariable boundp(dvariable x,double fmin,double fmax,dvariable& fpen)

bounds the variable x to the closed interval [fmin, fmax]. The term fpen is a penalty term
that modifies the behavior of the function. It must be added to the function being minimized.
Note that this means that if you want to maximize a function, you must change the sign of
the function before adding fpen to it! The function reset supplies complete control over
what parameters are active, through the vector control. For example, if control(1) is
equal to 1 while control(2) and control(3) are equal to 0, then only the proportions
at age will be estimated, while the means and standard deviations will be kept fixed. The
dvectors called mumin and mumax determine lower and upper bounds on the means, while the
dvectors sdmin and sdmax determine lower and upper bounds on the standard deviations.

Suppose that you want the standard deviations to be the same for all the groups. This
can be accomplished easily by modifying the last part of reset to
if (control(3)>0) // control(3) determines whether the sd’s are active
{
for (int j=1;j<=ngroups;j++)
{
sd(j)=boundp(x(ii),sdmin(j),sdmax(j),zpen); //Note that ii is not

// incremented
}
ii++; // Now increment ii

}

Another modification would be to enable individual mean or standard deviations to be
fixed or active.

14.3 Getting the initial x vector
It should be clear that the vector x is a transitory object associated with the minimization
routine. Without the function reset, it is not even clear to what model parameter a par-
ticular component of x corresponds or what value of the parameter it produces. For this
reason, it does not makes sense to save the values of x during or after the analysis. It is
the model parameters p, mu, and sd that should be saved. However, this raises a question.
Given the values of the model parameters, the values of the control vector, and the values
of the bounds on the parameters, what should the initial values of the x vector be? This
problem is solved by the functions boundpin and xinit.
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// file: xinit.cpp

#include <fvar.hpp>
#include "mixture.h"

void xinit(ivector& control,independent_variables& x,dvector& p,dvector& mu,
dvector& sd,dvector& mumin,dvector& mumax,dvector& sdmin,dvector& sdmax)

{
int ngroups=p.size();
int ii=1;
if (control(1)>0) // control(1) determines whether the p’s are active
{
for (int j=1;j<=ngroups;j++)
{
x(ii++)=boundpin(p(j),0.,1.);

}
}
if (control(2)>0) // control(2) determines whether the mu’s are active
{
for (int j=1;j<=ngroups;j++)
{
x(ii++)=boundpin(mu(j),mumin(j),mumax(j));

}
}
if (control(3)>0) // control(3) determines whether the sd’s are active
{
for (int j=1;j<=ngroups;j++)
{
x(ii++)=boundpin(sd(j),sdmin(j),sdmax(j));

}
}

}

The control structure of xinit exactly parallels that of reset, so no matter what switch
combinations or bounds are used, the correct values will be put into the components of x.
The function

double boundpin(double x,double fmin,double fmax)

is the inverse of the function boundp. Notice that the control vector, control, determines
how many active parameters there are.

The job of the function nvarcal is to use this information to calculate the number of
active parameters.
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// file: nvarcal.cpp

#include <fvar.hpp>
#include "mixture.h"

int nvarcal(ivector& control ,int ngroups)
{
int ii=1;
if (control(1)>0) // control(1) determines whether the p’s are active
{
for (int j=1;j<=ngroups;j++)
{
ii++;

}
}
if (control(2)>0) // control(2) determines whether the mu’s are active
{
for (int j=1;j<=ngroups;j++)
{
ii++;

}mix
}
if (control(3)>0) // control(3) determines whether the sd’s are active
{
for (int j=1;j<=ngroups;j++)
{
ii++;

}
}
int nvar=ii-1;
return(nvar);

}

The three functions reset, xinit, and nvarcal all share a common control structure
and make it possible to coordinate the various user options in the estimation routine.

Here is the code for the main routine in the mixture analysis program. The data are
assumed to be in a file named mixture.dat. The initial values for the parameters are
assumed to be in a file named mixture.par.

// file: mixture.cpp

#include <fvar.hpp>
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// header file containing all function prototypes used in this exmaple
#include "mixture.h"

#ifdef __BCPLUSPLUS__
extern unsigned _stklen = 20000;

#endif
#ifdef __ZTC__
long _stack = 20000;

#endif
void main()
{
// The observations are in the file mixture.dat
dvector y("mixture.dat"); // Read in the observations
ifstream infile2("mixture.par"); // The parameter estimates are in a
// file named mixture.par
int ngroups;
infile2 >> ngroups; // Read in the number of groups
ivector control(1,10); // There are 10 control switches for this model
infile2 >> control; // Read in the control switches
dvector p(1,ngroups);
dvector mu(1,ngroups);
dvector sd(1,ngroups);
dvector mumin(1,ngroups);
dvector mumax(1,ngroups);
dvector sdmin(1,ngroups);
dvector sdmax(1,ngroups);
infile2 >> p; // Read in the mixture proportions
infile2 >> mu; // Read in the mean lengths
infile2 >> sd; // Read in the standard deviations
infile2 >> mumin; // Read in the lower bounds on the mean lengths
infile2 >> mumax; // Read in the upper bounds on the mean lengths
infile2 >> sdmin; // Read in the lower bounds on the standard deviations
infile2 >> sdmax; // Read in the upper bounds on the standard deviations
infile2.close(); // close the file
int nvar=nvarcal(control,ngroups); // Get number of independent variables
independent_variables x(1,nvar);
double f;
dvector g(1,nvar);
xinit(control,x,p,mu,sd,mumin,mumax,sdmin,sdmax); // Get initial x values
fmm fmc(nvar);
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BEGIN_MINIMIZATION(nvar,f,x,g,fmc) // Estimate the parameters
// by minimizing fcomp

f=fcomp(y,p,mu,sd,mumin,mumax,sdmin,sdmax,control,x,0);
END_MINIMIZATION(nvar,g)
fcomp(y,p,mu,sd,mumin,mumax,sdmin,sdmax,control,x,1); // Save the

// parameter estimates
}

The job of the function fcomp is to put the x values into the model by calling the function
reset, and then to evaluate the log-likelihood by calling the function log_likelihood.

// file fcomp_m.cpp

#include <fvar.hpp>
#include "mixture.h"

double fcomp(dvector y,dvar_vector p,dvar_vector& mu,dvar_vector& sd,
dvector& mumin, dvector& mumax, dvector& sdmin, dvector& sdmax,
ivector& control,dvar_vector& x,int print_switch)

{
dvariable zpen;
zpen=reset(control,x,p,mu,sd,mumin,mumax,sdmin,sdmax); // Put the

// x vector into the model parameters
// and return the bounding function
// penalty in zpen

zpen+=normalize_p(p); // Make the proportions sum to 1
if (print_switch == 1)
{
save_pars(p,mu,sd,mumin,mumax,sdmin,sdmax,control);

}
dvariable f;
f=-log_likelihood(y,p,mu,sd); // Change the sign to minimize
f=f+zpen; // Add the penalty from the bounding functions
return(value(f));

}

Notice that while the parameterization of the mixture proportions, p, has restricted the
proportions to lie between 0 and 1, the proportions have not been restricted, so they sum
to 1. The function normalize_p restricts the p so that they sum to 1.

//file: normaliz.cpp

#include <fvar.hpp>
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#include "mixture.h"

dvariable normalize_p(dvar_vector& p)
{
dvariable psum=sum(p);
p=p/psum; // Now the p’s will sum to 1
dvariable zpen=1000.*log(psum)*log(psum);
return(zpen);

}

The penalty 1000.∗ log(psum)∗ log(psum) has been added to the function being minimized, to
remove the degeneracy in the parameterization of the p. Without this penalty, the minimizing
value would be independent of the value of psum. Including the penalty ensures that the
minimum value will occur for the value psum = 1.

14.4 Saving the parameter estimates

autodif uses the same memory locations for the derivative calculations as are used for
holding the variable objects. As a consequence, after the derivatives have been calculated,
the current value of the parameter estimates has been lost. In order to save the results after
the minimization has been carried out, it is necessary to calculate the parameters one more
time and print them into a file. The simplest way to do this is to use the code for fcomp
that already exists, and to put a switch into fcomp so that saving the parameters is enabled.
The parameters are written into the file mixture.par by the routine save_pars.

//file: savepar.cpp

#include <fvar.hpp>
#include "mixture.h"

void save_pars(dvar_vector& p,dvar_vector& mu,dvar_vector& sd,
dvector& mumin, dvector& mumax,dvector& sdmin, dvector& sdmax,
ivector& control)

{
ofstream outfile("mixture.par");
outfile << p.size() << "\n"; // The number of groups
outfile << control << "\n";
outfile << p << "\n\n";
outfile << mu << "\n\n";
outfile << sd << "\n\n";
outfile << mumin << "\n\n";
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outfile << mumax << "\n\n";
outfile << sdmin << "\n\n";
outfile << sdmax;

}
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Chapter 15

A Neural Network

This example illustrates the use of autodif ’s 2- and 3-dimensional ragged arrays.

15.1 Description of the neural network
An n-layer feed-forward neural network can be viewed as a process that, given a set of m1

inputs (x11, . . . , x1m1) at layer 1, produces a set of mn outputs (xn1, . . . , xnmn) at layer n.
Level 1 is referred to as the “input layer.” Level n is referred to as the “output layer.” Level 2
through Level n− 1 are referred to as “hidden layers.” The quantities xij are referred to as
“nodes.”

In a feed-forward neural network, the values of the nodes in each layer are determined
by the values in the previous layer via the relationship

xi+1,j = Φ

(
mi−1∑
k=1

wijkxik + bi+1,j

)
(15.1)

The function Φ is referred to as a “squashing function.” To the best of our knowledge, the
particular form of Φ does not seem to be especially important, so long as it is a continuously
differentiable monotone increasing function that maps (−∞,∞) into some desired bounded
set (a, b). The bounded set is often of the form (−0.5, 0.5) or (0, 1). The wijk are referred to
as “weights,” while the bij are called “bias terms.”

The shape or topology of the neural net is completely determined by the number of
levels, n, and the number of nodes in each level, mi. Assume that the mi are contained in
an ivector object num_nodes.

15.2 Implementation of the neural network
The xij can be viewed as a 2-dimensional ragged array with n rows and mi elements in the
ith row. Such an array can be created by the declaration
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dmatrix x(1,num_levels,1,num_nodes); // these are the nodes

The bias terms bij can also be viewed as a ragged matrix B with n− 1 rows. The declaration
for B requires a slight modification of the ivector called num_nodes to reflect the fact that
B does not need to contain row 1. The legal row index values for B should be from 2 to n.

ivector iv(2,num_levels);
for (int i=2;i<=num_levels;i++)
{
iv(i)=num_nodes(i); // Put the desired elements of num_nodes into iv

}
// Now declare B
dmatrix B(2,num_levels,1,iv);

For each i, 1 ≤ i < n, the weights, wijk, can be viewed as an mi+1×mi matrix. Thus, the
wijk can be viewed as a ragged 3-dimensional array W. To create W, we need some ivector
objects to contain the variable number of rows and columns.

ivector nrows(1,num_levels-1);
ivector ncols(1,num_levels-1);
for (i=1;i<num_levels;i++)
{
nrows(i)=num_nodes(i+1);
ncols(i)=num_nodes(i);

}
// Now declare W
d3_array W(1,num_levels-1,1,nrows,1,ncols);

If the squashing function Φ is extended to vector objects, by acting elementwise on the
elements of the vector, the code segment to carry out the calculations in equation (15.1) can
be written as

for (int i=1;i<num_levels; i++)
{
x[i+1]=Phi(W[i]*x[i]+B[i+1]);

}

15.3 Initializing the vector of active parameters
and resetting active parameter values
with the set_value functions

To set up the initial vector of parameter estimates needed by the function minimizer, it is
necessary to copy all the values of the active parameters. To copy values into or from 2- and
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3-dimensional objects, one must use a series of nested loops. This process is tedious and
prone to error. A collection of functions has been included in autodif to carry out these
sort of tasks. The function

set_value_inv(A,y,ii); // this is the ‘‘inverse’’ of the set_value function

will copy the elements of A into the dvector called y, starting at the offset specified by the
int ii. ii will be incremented so that it points at the correct offset in y to add the values
of other objects. A may be a dvector, a dmatrix, or a d3_array. For a dvector called v,
the statements

int ii=6;
set_value_inv(v,y,ii);

will have the same effect as

int ii=6;
for (int i=v.indexmin();i<=v.indexmax();i++)
{
y(ii++)=v(i);

}

The function

set_value(A,y,ii);

takes the values from the dvar_vector y, beginning at the offset ii, and puts them into the
object A, which may be a dvar_vector, a dvar_dmatrix, or a dvar3_array. Of course, it
is the user’s responsibility to declare the vector object y to have the appropriate size. To
count up the number of elements in the container objects, the function size_count() has
been defined. The functions set_value(), set_value_inv(), and size_count() have been
used in the neural net code to simplify the construction of the following functions:

• nvar_calc, which calculates the number of active parameters to be estimated,

• yinit, which puts the intial value of all the active parameters into the vector y for the
function minimizer, and

• reset, which calculates the current estimate of the active parameters from the vector y.

The code for these functions follows.

// Count up the number of active parameters
int nvar_calc(dmatrix& B, d3_array& W)
{
int nvar=0;
nvar+=size_count(B);
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nvar+=size_count(W);
return nvar;

}

// Put the parameter values from W and B into the vector y
void yinit(d3_array& W,dmatrix& B,independent_variables& y,int& num_levels,
ivector& num_nodes)

{
int ii=1;
set_value_inv(W,y,ii);
set_value_inv(B,y,ii);

}

// Put the values from the dvar_vector y into W and B
void reset(dvar3_array W,dvar_matrix& B,dvar_vector& y,int& num_levels,
ivector& num_nodes)

{
int ii=1;
set_value(W,y,ii);
set_value(B,y,ii);

}

15.4 Training the network

A training set for a neural net is a collection of input layer vectors together with a corre-
sponding set of output layer vectors. For each input layer vector, the corresponding output
layer vector can be thought of as the desired correct output response of the network for the
given input stimulus. The weights and bias terms of the network are adjusted so that the
difference between desired response and the actual response is minimized. We shall assume
that the training set is contained in a file called learning.smp. The training set will be
read in every time the response of the neural net is calculated. This provides for very large
training sets that could not be kept in memory.

ifstream infile("learning.smp"); // Open the file with the training data
infile >> num_learn; // read in the number of examples to be used
// Loop through the training data
for (int k=1;k<= num_learn; k++)
{
infile >> x[1];
if (!infile)
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{
cerr << "Error reading x[1] from file learning.smp\n";
exit(1);

}
infile >> correct_response;
if (!infile)
{
cerr << "Error reading correct_response from file learning.smp\n";
exit(1);

}
for (int i=1;i<num_levels; i++)
{
x[i+1]=Phi(W[i]*x[i]+B[i+1]);

}
dvar_vector vdiff=correct_response-x[num_levels];
z+=vdiff*vdiff; // z sums up the squared difference between the

// desired response and the actual response

// Add the penalty terms
dvariable v;
v=norm(W);
z+=.01*v*v;
v=norm(B);
z+=.01*v*v;

}

The parameters for W and B are chosen such that the total squared error is minimized.
A small quadratic penalty function of the model parameters is added to keep the values
of the parameters close to zero. This is much like the use of ridge regression [4] in linear
models. We don’t know whether or not the use of such penalty functions really improves
the performance of the neural net, but it seemed to produce good results for the problem
considered here.

15.5 The squashing function

For the squashing function, Φ, we have employed the inverse tangent function atan.

dvar_vector Phi(dvar_vector& v)
{
// This squashing function maps into the interval (-.5,.5)
RETURN_ARRAYS_INCREMENT; // Need this because the function returns a
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// variable type
int min=v.minindex();
int max=v.maxindex();
dvar_vector tmp(min,max)
for (int i=min;i<=max;i++)
{
tmp(i)=0.31831*atan(v(i)); //0.31831 is 1/PI
// tmp(i)=0.31831*atan(v(i))+0.5; // This maps into (0,1)

}
RETURN_ARRAYS_DECREMENT;
return(tmp);

}

15.6 Specifying the structure of the neural net
and getting initial parameter estimates

The structure of the neural net is determined by specifying the number of layers and the
number of nodes in each layer. This information is put into the file struct.nrl.

To begin training the neural net, the d3_array called W and the dmatrix called B were
filled with normally distributed random numbers, with mean 0 and standard deviation 1.0.
The value of 1.0 for the standard deviation was picked by trial and error. If the standard
deviation is too small, the minimization routine doesn’t seem to be able to find a good
minimum and the procedure “stalls” at a bad local minimum.

The program WINIT.EXE reads the file struct.nrl and writes the initial parameter values
into the file WEIGHTS.PAR.

15.7 A three spiral problem

Touretsky and Pomerlau [5] discussed the problem of training a neural network to recognize
points that lie on or near a double spiral. We thought it would be interesting to extend this
problem to points that lie on or near a triple spiral.
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Figure 15.1

The training set for the neural net is shown in Fig-
ure 15.1. The net is being trained to determine whether
a point in a disk lies on or near one of three spirals. The
input level to the net consists of two nodes: the Cartesian
coordinates of the point. The output level of the net has
three nodes. The node corresponding to the spiral on which
a particular point is located is intended to be either turned
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on (have value +.5), or turned off (have value −.5). Actu-
ally, any value for a node that is less than zero is considered
“off” while any value which is greater than 0 is considered
“on.” Due to the nature of the inverse tangent squashing
function, the maximum value produced by the neural net
is about 0.42, while the minimum value is about −0.42. If
the neural net has 0, 2, or 3 output nodes turned on (> 0)
for a point, then that point is considered unclassified.

A typical input consists of the pair of coordinates of a point on the spiral (0.0618, 0.1901)
together with the triple (0.5,−0.5,−0.5), which is the desired output for this point, since it
lies on the first spiral arm.

We trained neural nets of increasing complexity until a design was obtained that had
enough parameters to classify all the points in the learning sets correctly. The neural net we
chose has 6 layers with 2 input nodes, 8 nodes in each of the 4 hidden layers, and 3 output
nodes. This neural net has 267 parameters to be estimated.

Training the neural net required about 20 hours on a 20 MHz 386 computer. The file
GRADFIL1.TMP, which stores the temporary information needed to calculate the gradient,
was about 3 MB in size. It was stored on a ram disk. At any time, it is possible to stop the
program by typing ‘q.’ The current parameter estimates are printed into the file EST.PAR. To
restart the learning process, you must first copy the file EST.PAR into the file WEIGHTS.PAR.
Then it is possible to carry out training sessions during periods when the computer is not
required. Figure 15.2 illustrates how the neural net has classified the points in the disk.
The points in A, B, and C have been classified as being associated with the corresponding
spiral. The small points in D are unclassified. The large points in D are the training set.
The unclassified points appear to mark fairly regular boundaries between the spirals. Our
solution does not seem to exhibit the “bumps and gaps” reported by Touretsky and Pomerlau
for the double spiral solution. Perhaps this is due to the superiority of our minimization
procedure over the method they employed. It may also be due to the use of more parameters,
combined with a small quadratic penalty function on the parameters to introduce stability
into the model. In any event, we seem to have obtained a nice solution to the problem.
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fmm class

controlling minimization with, 10-4
crit, 10-4
imax, 10-4
iprint, 10-4
ireturn, 10-4
maxfn, 10-4

min_improve, 10-4
scroll_flag, 10-4

fmmc class
controlling minimization with, 10-4

formatting, 7-1
function minimizer

conjugate gradient, 1-9
convergence criteria for, 10-5

global variables
access functions for, 9-1

GRADFIL1.TMP, 15-7
gradfil1.tmp, 8-1
gradfil2.tmp, 8-1
gradient_structure, 1-6, 9-1, 13-2
GRADSTACK_BUFFER_SIZE, 9-1

hardware, 2-1

I/O error checking, 7-2
ide

Borland, 2-2
Zortech, 2-3

imatrix, 3-1
implicit conversion, 3-13
independent variables, 1-6

maximum number of, 9-2
independent_variables

declaration of, 10-2
initialization of, 10-2

initializing autodif classes, 6-1
input and output, 7-1

binary, 7-3
example, 7-3
formatted, 7-1
unformatted, 7-3

int, 3-1
inv, 4-5
inverse, 4-5
iostream, 7-1
ivector, 3-1
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jacobcalc, 13-2

least-squares
parameter estimation, 12-1

libraries, 2-1
optimized, 3-9, 6-1
safe, 3-9, 6-1

linker options
Borland, 2-3

linking
Borland linkers, 2-3

lmatrix, 3-1
log, 4-13
log10, 4-13
long int, 3-1
lvector, 3-1

macros
BEGIN_MINIMIZATION, 1-7
END_MINIMIZATION, 1-7

make, 2-3
manipulators

setf, 7-2
setfixex, 7-1
setprecision, 7-1
setscientific, 7-1
setw, 7-1

matrix
colfill, 4-9
colfill_randu, 4-9
colfill_seqadd, 4-9
colsum of, 4-6
dividing by a number, 4-4
element-wise division, 4-5
element-wise product of, 4-5
extract_column, 4-10
extract_row, 4-10
multiplication by a number, 4-3
multiplication of two, 4-3
multiplying a vector by a, 4-3
multiplying a vector times a, 4-3

rowfill, 4-9
rowfill_randn, 4-10
rowfill_randu, 4-9
rowfill_seqadd, 4-9
rowsum of, 4-6
subtracting a number from a, 4-2
the determinant of, 4-5
the identity matrix function, 4-5
the inverse of, 4-5
the norm of, 4-5
the norm squared of, 4-5

matrix multiplication, 4-3
max

operation on a vector, 4-6, 4-13
MAX_DLINKS, 9-3
MAX_NVAR_OFFSET, 9-2
maximum likelihood estimation

for robust regression, 12-3
maximum size

of a dvar_vector, 3-4
mean

mean of a vector object, 11-3
memory model, 2-2–2-4
min

operation on a vector, 4-6, 4-13
minimization

of a function, 1-6
minimization of functions

conjugate gradient method, 10-1
quasi-Newton method, 10-1
user interface, 10-1

minimize function, 10-1
mixture of normal distributions, 11-3
multinomial fill

of an ivector object, 11-3
multivariate normal distribution

calculation of the log-likelihood func-
tion for, 4-8

log-likelihood function, 1-12

neural net, 15-1
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bias terms, 15-1, 15-4
feed-forward, 15-1
input layer, 15-1
nodes, 15-1
output layer, 15-1
squashing function, 15-1
training set, 15-4
weights, 15-4

Newton-Raphson method
example of, 13-2
roots of equations, 13-2

nonlinear-parameter estimation, 11-1
norm, 4-5
norm2, 4-5
NUM_RETURN_ARRAYS

default value, 9-1

operator ++, 4-11
for dvectors, 4-11
use with subvectors, 4-11

operator −−, 4-11
for dvectors, 4-11
use with subvectors, 4-11

operator
, 7-2
I/O error checking and, 7-2

operator (), 4-10, 4-13, 11-3
operators

<<, 3-10
<<, >>, 3-3

operators ∗ and /, 4-3
operators + and −, 4-1
operators () and [], 3-9
operators << and >>, 7-1
operators +=, -=, *=, and /=, 4-2
optimization considerations

accessing container class elements, 5-2
temporary files, 5-1

optimizing performance
using the best operators for a calcula-

tion, 4-1, 4-7, 5-2

outer product
of two vectors, 4-3

outliers, 12-5
overlays

Borland C++ compiler and, 6-2
overloaded operators, 1-10
overloading

of functions in C++, 1-9

parameter estimation
least-squares, 12-1
robust-nonlinear, 12-1

penalty function, 14-4, 14-5, 14-10
getting the sign correct, 10-8
use wish bounding functions, 10-7

pow, 4-13
precompiled derivative code, 1-3

quasi-Newton method, 10-1

ragged 3-dimensional arrays, 5-3
ragged matrices, 5-3
ragged matrix, 15-1
ram disk

and temporary files, 8-1
random number generator

example of the use of, 11-2
random numbers

filling vectors with, 11-1
resizable arrays, 4-4
RETURN_ARRAYS_DECREMENT, 3-8, 9-1
RETURN_ARRAYS_INCREMENT, 3-8, 9-1
RETURN_ARRAYS_SIZE, 9-2
ridge regression, 15-5
robust estimation, 11-2

in nonlinear parameter estimation,
12-1

robust regression
a simple example, 12-8

row_vector function, 3-9
rowfill

filling a matrix row with a vector, 4-9
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rowfill_randn
filling a matrix with random numbers,

4-10
rowfill_randu

filling a matrix with random numbers,
4-9

rowfill_seqadd
filling a matrix, 4-9

rowmax(), 3-12, 3-13
rowmin(), 3-13
rowshift(int&), 3-12, 3-13
rowsize(), 3-12, 3-13
rowsum

operation on a matrix, 4-6

safe arrays, 1-9, 3-4
scalar product, 4-3
set_CMPDIF_BUFFER_SIZE, 9-2
set_MAX_DLINKS

setting the maximum number of
dvariable objects, 9-3

set_NUM_DEPENDENT_VARIABLES(int
i);, 13-1

set_value, 15-3
set_value_inv, 15-3
several dependent variables, 13-1

default number of, 13-1
use of the operator <<, 13-1

sfabs, 4-13
simulation models, 11-1
sin, 4-13
sinh, 4-13
size_count, 15-3
slice

of a d3array, 3-12
slicehift(int&), 3-13
slicemax(), 3-13
slicemin(), 3-13
slicesize(), 3-13
solve function, 4-7
solving a system of linear equations, 4-7

sorting, 4-12
dmatrix, 4-12
dvector, 4-12

speed
of calculations, 1-2

sqrt, 4-13
squashing function

use of inverse tangent for, 15-5
stack

allocating sufficient space for the, 9-3
checking for overflow of the, 9-3
setting the stack size for Borland C++,

9-4
setting the stack size for Zortech C++,

9-4
statistical functions, 11-1
std_dev

standard deviation a vector object,
11-3

stream input and output
of dvariables, 3-3

stream operators
<<, >>, 3-3

subtraction of vectors, 4-2
subvectors

using to remove loops from code, 4-11
sum, 5-2

operation on a vector, 4-6
symmetric matrix

Choleski decomposition, 4-7
system requirements, 2-1

tan, 4-13
tanh, 4-13
temporary files

cmpdiff.tmp, 8-1
default directory for, 8-1
effect of abnormal program termina-

tion on, 8-1
for saving derivative information, 8-1
gradfil1.tmp, 8-1

Index-6



gradfil2.tmp, 8-1
use of the dos environment string

tmp, 8-1
use of the dos environment string

tmp1, 8-1
two-sided exponential distribution, 12-3

value function, 3-3
variable objects, 3-1
vector

component-wise difference of, 4-2
component-wise sum of, 4-1
dividing a number by, 4-4
dividing by a number, 4-4
dot product of two, 4-3
element-wise division, 4-5
element-wise product of, 4-4
extracting a subvector, 11-3
fill, 4-8
fill_multinomial, 4-10
fill_randbi, 4-10
fill_randn, 4-10
fill_randu, 4-9
fill_seqadd, 4-9

function call () to extract subvector,
4-10, 11-3

I/O operations, 7-1
maximum element of, 4-6, 4-13
minimum element of, 4-6, 4-13
multiplying a matrix by a, 4-3
multiplying a matrix times a, 4-3
multiplying a number by a, 4-3
outer product of two, 4-3
subtracting a number from a, 4-2
sum over the elements of, 4-6
the norm of, 4-5
the norm squared of, 4-5

vector objects
concatenation, 4-4

vector operations
example of, 12-5
to reduce the amount of temporary

storage required, 12-5

warning messages
temporary used for type xxx in func-

tion yyy, 1-7

Zortech, 2-3, 9-4
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