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Chapter 1

Getting Started with AD Model Builder

This manual describes AD Model Builder, the fastest, most powerful software for rapid
development and fitting of general nonlinear statistical models available. The accompanying
demonstration disk has a number of example programs from various fields, including chemical
engineering, natural resource modeling, and financial modeling. As you will see, with a
few statements, you can build powerful programs to solve problems that would completely
defeat other modeling environments. The AD Model Builder environment makes it simple
to deal with recurring difficulties in nonlinear modeling, such as restricting the values that
parameters can assume, carrying out the optimization in a stepwise manner, and producing
a report of the estimates of the standard deviations of the parameter estimates. In addition,
these techniques scale up to models with at least 5000 independent parameters on a 1000
MHz Pentium III, and more on more powerful platforms. So, if you are interested in a really
powerful environment for nonlinear modeling—read on!

AD Model Builder provides a template-like approach to code generation. Instead of
needing to write all the code for the model, the user can employ any ascii file editor to
simply fill in the template, describing the particular aspects of the model—data, model
parameters, and the fitting criterion—to be used. With this approach, the specification of
the model is reduced to the absolute minimum number of statements. Reasonable default
behavior for various aspects of modeling, such as the input of data and initial parameters, and
reporting of results, are provided. Of course, it is possible to override this default behavior
to customize an application when desired. The command line argument -ind NAME followed
by the string NAME changes the default data input file to NAME, where NAME is any name
you like.

The various concepts embodied in AD Model Builder are introduced in a series of ex-
amples. You should at least skim through each of the examples in the order they appear,
so that you will be familiar with the concepts used in the later examples. The examples
disk contains the AD Model Builder template code, the C++ code produced by AD Model
Builder, and the executable programs produced by compiling the C++ code. This process
of producing the executable is automated, so that the user who doesn’t wish to consider
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the vagaries of C++ programming can go from the AD Model Builder template to the com-
piled executable in one step. Assuming that the C++ compiler and the AD Model Builder
and autodif libraries have been properly installed, then to produce a AD Model Builder
executable, it is only necessary to type makeadm root, where root.tpl is the name of the
ascii file containing the template specification. To simplify model development, two modes
of operation are provided: a safe mode with bounds checking on all array objects, and an
optimized mode, for fastest execution.

AD Model Builder achieves its high performance levels by employing the autodif C++

class library. autodif combines an array language with the reverse mode of automatic
differentiation, supplemented with precompiled adjoint code for the derivatives of common
array and matrix operations. However, all of this is completely transparent to the AD Model
Builder user. It is only necessary to provide a simple description of the statistical model
desired, and the entire process of fitting the model to data and reporting the results is taken
care of automatically.

Although C++ potentially provides good support for mathematical modeling, the language
is rather complex—it cannot be learned in a few days. Moreover, many features of the
language are not needed for mathematical modeling. A novice user who wishes to build
mathematical models may have a difficult time deciding what features of the language to learn
and what features can be ignored until later. AD Model Builder is intended to help overcome
these difficulties and to speed up model development. When using AD Model Builder, most
of the aspects of C++ programming are hidden from the user. In fact, the beginning user can
be almost unaware that C++ underlies the implementation of AD Model Builder. It is only
necessary to be familiar with some of the simpler aspects of C or C++ syntax.

To interpret the results of the statistical analysis, AD Model Builder provides simple
methods for calculating the profile likelihood and Markov chain simulation estimates of the
posterior distribution for parameters of interest (Hastings-Metropolis algorithm).

1.1 What are nonlinear statistical models?

AD Model Builder is software for creating computer programs to estimate the parameters
(or the probability distribution of parameters) for nonlinear statistical models. This raises
the question: “What is a nonlinear statistical model?” Consider the following model. We
have a set of observations Yi and xij, where it is assumed that

Yi =
m∑
j=1

ajxij + εi, (1.1)

and where the εi are assumed to be normally distributed random variables with equal vari-
ance σ2. Given these assumptions, it can be shown that “good” estimates for the unknown
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parameters aj are obtained by minimizing

∑
i

(
Yi −

m∑
j=1

ajxij

)2

(1.2)

with respect to these parameters. These minimizing values can be found by taking the
derivatives with respect to the aj and setting them equal to zero. Since equation (1.1)
is linear in the aj and equation (1.2) is quadratic, it follows that the equations given by
setting the derivatives equal to zero are linear in the aj. So, the estimates can be found
by solving a system of linear equations. For this reason, such a statistical model is referred
to as “linear.” Over time, very good numerically stable methods have been developed for
calculating these least-squares estimates. For situations where either the equations in the
model corresponding to equation (1.1) are not linear, or the statistical assumptions involve
non-normal random variables, the methods for finding good parameter estimates will involve
minimizing functions that are not quadratic in the unknown parameters aj.

In general, these optimization problems are much more difficult than those arising in
least-squares problems. There are, however, various techniques that render the estimation
of parameters in such nonlinear models more tractable. The AD Model Builder package is
intended to organize these techniques in such a way that they are easy to employ (where
possible, employing them in a way that the user does not need to be aware of them), so
that investigating nonlinear statistical models becomes—so far as possible—as simple as for
linear statistical models.

1.2 Installing the software
AD Model Builder is available without charge from http://admb-project.org/downloads/.
Libraries compiled for most common combinations of computer architectures, operating sys-
tems, and compilers (including Windows, Linux, MacOS and OpenSolaris) and the complete
source code are available.

Installation instructions for different compilers are also available on-line at
http://admb-project.org/documentation/installation

1.3 The sections in an AD Model Builder tpl file
An AD Model Builder template (tpl file) consists of up to 11 sections. Eight of these
sections are optional. Optional sections are enclosed in brackets [ ]. The optional FUNCTION
keyword defines a subsection of the PROCEDURE_SECTION.

The simplest model contains only the three required sections:

• a DATA_SECTION,
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• a PARAMETER_SECTION, and

• a PROCEDURE_SECTION.

For example,

DATA_SECTION

[INITIALIZATION_SECTION]

PARAMETER_SECTION

[PRELIMINARY_CALCS_SECTION]

PROCEDURE_SECTION
[FUNCTION]

[REPORT_SECTION]

[RUNTIME_SECTION]

[TOP_OF_MAIN_SECTION]

[GLOBALS_SECTION]

[BETWEEN_PHASES_SECTION]

[FINAL_SECTION]

1.4 The original AD Model Builder examples
This section includes a short description of the original examples distributed with AD Model
Builder. There are now many more examples, which are discussed in subsequent chapters.

A very simple example. This is a trivial least-squares linear model, which is included
simply to introduce the basics of AD Model Builder.

A simple nonlinear regression model for estimating the parameters describing a
von Bertalanffy growth curve from size-at-age data. AD Model Builder’s robust regression
routine is introduced and used to illustrate how problems caused by “outliers” in the data
can be avoided.
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A chemical kinetics problem. A model defined by a system of ordinary differential
equations. The purpose is to estimate the parameters that describe the chemical reaction.

A problem in financial modeling. A Generalized Autoregressive Conditional Hetero-
skedasticity, or garch, model is used to attempt describing the time series of returns from
some market instrument.

A problem in natural resource management. The Schaeffer-Pella-Tomlinson Model
for investigating the response of an exploited fish population is developed and extended to
include a Bayesian times series treatment of time-varying carrying capacity. This example
is interesting because the model is rather temperamental. Several techniques for producing
reliable convergence of the estimation procedure to the correct answer are described. For
one of the data sets, over 100 parameters are estimated.

A simple fisheries catch-at-age model. These models are used to try and estimate
the exploitation rates, etc., in exploited fish populations.

More complex examples are presented in subsequent chapters.

1.5 Example 1: linear least squares
To illustrate this method, we begin with a simple statistical model, which is to estimate the
parameters of a linear relationship of the form

Yi = axi + b for 1 <= i <= n,

where xi and Yi are vectors, and a and b are the model parameters that are to be estimated.
The parameters are estimated by the method of least squares—that is, we find the values of
a and b such that the sum of the squared differences between the observed values Yi and the
predicted values axi + b is minimized. That is, we want to solve the problem

min
a,b

n∑
i=1

(Yi − axi − b)2

The template for this model is in the file SIMPLE.TPL. To make the model, one would
type makeadm simple. The resulting executable for the model is in the file SIMPLE.EXE. The
contents of SIMPLE.TPL are below. (Anything following “//” is a comment.)

DATA_SECTION
init_int nobs // nobs is the number of observations
init_vector Y(1,nobs) // the observed Y values
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init_vector x(1,nobs)
PARAMETER_SECTION
init_number a
init_number b
vector pred_Y(1,nobs)
objective_function_value f

PROCEDURE_SECTION
pred_Y=a*x+b; // calculate the predicted Y values
f=regression(Y,pred_Y); // do the regression---the vector of

// observations goes first

The main requirement is that all keywords must begin in column 1, while the code itself
must be indented.

1.6 The data section
Roughly speaking, the data consist of the stuff in the real world that you observe and want
to analyze. The data section describes the structure of the data in your model. Data objects
consist of integers (int) and floating point numbers (number). These can be grouped into
1-dimensional (ivector and vector) and 2-dimensional (imatrix and matrix) arrays. The
‘i’ in ivector distinguishes a vector of type int from a vector of type number. For arrays
of type number, there are currently arrays up to dimension 7.

Some of your data must be read in from somewhere—that is, you need to start with
something. These data objects are referred to as “initial objects” and are distinguished by
the prefix init, as in init_int or init_number. All objects prefaced with init in the
DATA_SECTION are read in from a data file in the order in which they are declared. The
default file names for various files are derived from the name of the executable program. For
example, if the executable file is named ROOT.EXE, then the default input data file name is
ROOT.DAT. For this example, the executable file is named SIMPLE.EXE, so the default data
file is SIMPLE.DAT. Notice that once an object has been read in, its value is available to be
used to describe other data objects. In this case, the value of nobs can be used to define the
size of the vectors Y and x. The next line

init\_vector Y(1,nobs)

defines an initial vector object Y whose minimum valid index is 1 and whose maximum valid
index is nobs. This vector object will be read in next from the data file. The contents of
the file SIMPLE.DAT are shown below.

# number of observations
10

# observed Y values
1.4 4.7 5.1 8.3 9.0 14.5 14.0 13.4 19.2 18

1-6



# observed x values
-1 0 1 2 3 4 5 6 7 8

It is possible to put comment lines in the data files. Comment lines must have the character
# in the first column.

It is often useful to have data objects that are not initial. Such objects have their values
calculated from the values of initial data objects. Examples of the use of non-initial data
objects are given below.

1.7 The parameter section

It is the parameters of your model that provide the analysis of the data. (Perhaps more
correctly, it is the values of these parameters, as picked by the fitting criterion for the model,
that provide the analysis of the data.) The PARAMETER_SECTION is used to describe the
structure of the parameters in your model. The description of the model parameters is
similar to that used for the data in the DATA_SECTION.

All parameters are floating point numbers (or arrays of floating point numbers). The
statement init_number b defines a floating point (actually, a double) number. The preface
init means that this is an initial parameter. Initial parameters have two properties that
distinguish them from other model parameters. First, all of the other model parameters are
calculated from the initial parameters. This means that in order to calculate the values of
the model parameters, it is first necessary to have values for the initial parameters. A major
difference between initial data objects (which must be read in from a data file) and initial
parameters is that since parameters are estimated in the model, it is possible to assign initial
default values to them.

The default file name for the file that contains initial values for the initial model pa-
rameters is ROOT.PIN. If no file named ROOT.PIN is found, default values are supplied for
the initial parameters. (Methods for changing the default values for initial parameters are
described below.) The statement

vector pred_Y(1,nobs)

defines a vector of parameters. Since it is not prefaced with init, the values for this vector
will not be read in from a file or given default values. It is expected that the value of the
elements of this vector will be calculated in terms of other parameters.

The statement objective_function_value f defines a floating point (again, actually a
double) number. It will hold the value of the fitting criterion. The parameters of the model
are chosen so that this value is minimized.1 Every AD Model Builder template must include
a declaration of an object of type objective_function_value and this object must be set
equal to a fitting criterion. (Don’t worry. For many models, the fitting criterion is provided

1Thus it should be set equal to minus the log-likelihood function if that criterion is used
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for you—as in the regression and robust_regression fitting criterion functions in the
current and next examples.)

1.8 The procedure section

The PROCEDURE_SECTION contains the actual model calculations. This section contains C++

code, so C++ syntax must be obeyed. (Those familiar with C or C++ will notice that the usual
methods for defining and ending a function are not necessary and, in fact, cannot be used
for the routine in the main part of this section.) Statements must end with a “;”—exactly
as with C or C++. The ‘;’ is optional in the DATA_SECTION and the PARAMETER_SECTION.
The code uses autodif’s vector operations, which enable you to avoid writing a lot of code
for loops. In the statement pred_Y=a*x+b; the expression a*x forms the product of the
number a and the components of the vector x, while +b adds the value of the number b to
this product, so that pred_Y has the components axi + b. In the line

f=regression(Y,pred\_Y);

the function regression calculates the log-likelihood function for the regression and assigns
this value to the object f, which is of type objective_function_value. This code gener-
alizes immediately to nonlinear regression models and can be trivially modified (with the
addition of one word) to perform the robust nonlinear regression. This is discussed in the
second example. For the reader who wants to know, the form of the regression function is
described in Appendix A.

Note that the vector of observed values goes first. The use of the regression function
makes the purpose of the calculations clearer, and it prepares the way for modifying the
routine to use AD Model Builder’s robust regression function.

1.9 The preliminary calculations section

Note that LOCAL_CALCS and its variants in the DATA_SECTION and the PROCEDURE_SECTION
has greatly reduced the need for the PRELIMINARY_CALCS_SECTION.

The PRELIMINARY_CALCS_SECTION, as its name implies, permits one to do preliminary
calculations with the data before getting into the model proper. Often the input data are
not in a convenient form for doing the analysis and one wants to carry out some calculations
with the input data to put them in a more convenient form. Suppose that the input data
for the simple regression model are in the form

# number of observations
10

# observed Y values observed x values
1.4 -1

1-8



4.7 0
5.1 1
8.3 2
9.0 3
14.5 4
14.0 5
13.4 6
19.2 7
18 8

The problem is that the data are in pairs in the form (Yi, xi), so that we can’t read in either
the xi or Yi first. To read in the data in this format, we will define a matrix with nobs rows
and two columns. The DATA_SECTION becomes

DATA_SECTION
init_int nobs
init_matrix Obs(1,nobs,1,2)
vector Y(1,nobs)
vector x(1,nobs)

Notice that since we do not want to read in Y or x, these objects are no longer initial objects,
so their declarations are no longer prefaced with int. The observations will be read into
the initial matrix object Obs so that Y is in the first column of Obs, while x is in the second
column. If we don’t want to change the rest of the code, the next problem is to get the
first column of Obs into Y, and the second column of Obs into x. The following code in the
PRELIMINARY_CALCS_SECTION will accomplish this objective. It uses the function column,
which extracts a column from a matrix object so that it can be put into a vector object.

PRELIMINARY_CALCS_SECTION
Y=column(Obs,1); // extract the first column
x=column(Obs,2); // extract the second column

1.10 The use of loops and element-wise operations
This section can be skipped on first reading.

To accomplish the column-wise extraction presented above, you would have to know that
autodif provides the column operation. What if you didn’t know that and don’t feel like
reading the manual yet? For those who are familiar with C, it is generally possible to use
lower level “C-like” operations to accomplish the same objective as autodif’s array and
matrix operations. In this case, the columns of the matrix Obs can also be copied to the
vectors x and Y by using a standard for loop and the following element-wise operations

PRELIMINARY_CALCS_SECTION
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for (int i=1;i<=nobs;i++)
{
Y[i]=Obs[i][1];
x[i]=Obs[i][2];

}

Incidentally, the C-like operation [] was used for indexing members of arrays. AD Model
Builder also supports the use of (), so that the above code could be written as

PRELIMINARY_CALCS_SECTION
for (int i=1;i<=nobs;i++)
{
Y(i)=Obs(i,1);
x(i)=Obs(i,2);

}

which may be more readable for some users. Notice that it is also possible to define C objects,
such as the object of type int i used as the index for the for loop, “on the fly” in the
PRELIMINARY_CALCS_SECTION or the PROCEDURE_SECTION.

1.11 The default output from AD Model Builder

By default, AD Model Builder produces three or more files:

1. ROOT.PAR, which contains the parameter estimates in ascii format,

2. ROOT.BAR, which is the parameter estimates in a binary file format, and

3. ROOT.COR, which contains the estimated standard deviations and correlations of the
parameter estimates.

The template code for the simple model is in the file SIMPLE.TPL. The input data is
in the file SIMPLE.DAT. The parameter estimates are in the file SIMPLE.PAR. By default,
the standard deviations and the correlation matrix for the model parameters are estimated.
They are in the file SIMPLE.COR:

index value std.dev 1 2
1 a 1.9091e+00 1.5547e-01 1
2 b 4.0782e+00 7.0394e-01 -0.773 1

The format of the standard deviations report is to give the name of the parameter followed
by its value and standard deviation. After that, the correlation matrix for the parameters
is given.

1-10



1.12 Robust nonlinear regression
with AD Model Builder

The code for the model template for this example is found in the file VONB.TPL. This example
is intended to demonstrate the advantages of using AD Model Builder’s robust regression
routine over standard nonlinear least square regression procedures. Further discussion about
the underlying theory can be found in the autodif user’s manual, but it is not necessary
to understand the theory to make use of the procedure. Figure 1.1 estimates the parameters
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index value std.dev 1 2 3
1 Linf 5.4861e+01 2.4704e+00 1.0000
2 K 1.7985e-01 2.7127e-02 -0.9191 1.0000
3 t0 1.8031e-01 2.9549e-01 -0.5856 0.7821 1.0000

Figure 1.1: Results for nonlinear regression with good data set.

describing a growth curve from a set of data consisting of ages and size-at-age data. The
form of the (von Bertalanffy) growth curve is assumed to be

s(a) = L∞

(
1− exp

(
−K(a− t0)

) )
(1.3)

The three parameters of the curve to be estimated are L∞, K, and t0.
Let Oi and ai be the observed size and age of the ith animal. The predicted size s(ai)

is given by equation (1.3). The least-squares estimates for the parameters are found by

1-11



minimizing
min

L∞,K,t0

∑
i

(
Oi − s(ai)

)2
DATA_SECTION
init_int nobs;
init_matrix data(1,nobs,1,2)
vector age(1,nobs);
vector size(1,nobs);

PARAMETER_SECTION
init_number Linf;
init_number K;
init_number t0;
vector pred_size(1,nobs)
objective_function_value f;

PRELIMINARY_CALCS_SECTION
// get the data out of the columns of the data matrix
age=column(data,1);
size=column(data,2);
Linf=1.1*max(size); // set Linf to 1.1 times the longest observed length

PROCEDURE_SECTION
pred_size=Linf*(1.-exp(-K*(age-t0)));
f=regression(size,pred_size);

Notice the use of the regression function, which calculates the log-likelihood function of
the nonlinear least-squares regression. This part of the code is formally identical to the
code for the linear regression problem in the simple example, even though we are now doing
nonlinear regression. A graph of the least-square estimated growth curve and the observed
data is given in Figure 1.1. The parameter estimates and their estimated standard deviations
produced by AD Model Builder are also given. For example, the estimate for L∞ is 54.86,
with a standard deviation of 2.47. Since a 95% confidence limit is about ± two standard
deviations, the usual 95% confidence limit of L∞ for this analysis would be 54.86± 4.94.

A disadvantage of least-squares regression is the sensitivity of the estimates to a few “bad”
data points or outliers. Figure 1.2 shows the least-squares estimates when the observed size
for age 2 and age 14 have been moved off the curve. There has been a rather large change in
some of the parameter estimates. For example, the estimate for L∞ has changed from 54.86
to 48.91, and the estimated standard deviation for this parameter has increased to 5.99.
This is a common effect of outliers on least-squares estimates. They greatly increase the
size of the estimates of the standard deviations. As a result, the confidence limits for the
parameters are increased. In this case, the 95% confidence limits for L∞ have been increased
from 54.86± 4.94 to 48.91± 11.98.
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Of course, for this simple example, it could be argued that a visual examination of the
residuals would identify the outliers so that they could be removed. This is true, but in
larger nonlinear models, it is often not possible, or convenient, to identify and remove all the
outliers in this fashion. Also, the process of removing “inconvenient” observations from data
can be uncomfortably close to “cooking” the data in order to obtain the desired result from
the analysis. An alternative approach, which avoids these difficulties, is to employ AD Model
Builder’s robust regression procedure, which removes the undue influence of outlying points
without the need to expressly remove them from the data.
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Nonlinear regression with bad data set
index value std.dev 1 2 3

1 Linf 4.8905e+01 5.9938e+00 1.0000
2 K 2.1246e-01 1.2076e-01 -0.8923 1.0000
3 t0 -5.9153e-01 1.4006e+00 -0.6548 0.8707 1.0000

Figure 1.2: Nonlinear regression with bad data set.

1.13 Modifying the model to use
robust nonlinear regression

To invoke the robust regression procedure, it is necessary to make three changes to the
existing code. The template for the robust regression version of the model can be found in
the file VONBR.TPL.
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DATA_SECTION
init_int nobs;
init_matrix data(1,nobs,1,2)
vector age(1,nobs)
vector size(1,nobs)

PARAMETER_SECTION
init_number Linf
init_number K
init_number t0
vector pred_size(1,nobs)
objective_function_value f
init_bounded_number a(0.0,0.7,2)

PRELIMINARY_CALCS_SECTION
// get the data out of the columns of the data matrix
age=column(data,1);
size=column(data,2);
Linf=1.1*max(size); // set Linf to 1.1 times the longest observed length
a=0.7;

PROCEDURE_SECTION
pred_size=Linf*(1.-exp(-K*(age-t0)));
f=robust_regression(size,pred_size,a);

The main modification to the model involves the addition of the parameter a, which is used
to estimate the amount of contamination by outliers. This parameter is declared in the
PARAMETER_SECTION:

init_bounded_number a(0.0,0.7,2)

This introduces two concepts: 1) putting bounds on the values that initial parameters can
take on and 2) carrying out the minimization in a number of stages. The value of a should be
restricted to lie between 0.0 and 0.7. (See the discussion on robust regression in the autodif
user’s manual if you want to know where the 0.0 and 0.7 come from.) This is accomplished by
declaring a to be of type init_bounded_number. In general, it is not possible to estimate the
parameter a determining the amount of contamination by outliers until the other parameters
of the model have been “almost” estimated—that is, until we have done a preliminary fit of
the model. This is a common situation in nonlinear modeling and is discussed further in
some later examples. So, we want to carry out the minimization in two phases.

During the first phase, a should be held constant. In general, for any initial parameter,
the last number in its declaration, if present, determines the number of the phase in which
that parameter becomes active. If no number is given, the parameter becomes active in
phase 1. Note: For an init_bounded_number, the upper and lower bounds must be given,
so the declaration
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init_bounded_number a(0.0,0.7)

would use the default phase 1. The 2 in the declaration for a causes a to be constant until
the second phase of the minimization.

The second change to the model involves the default initial value a. The default value
for a bounded number is the average of the upper and lower bounds. For a, this would be
0.35, which is too small. We want to use the upper bound of 0.7. This is done by adding
the line

a=0.7;

in the PRELIMINARY_CALCS_SECTION. Finally, we modify the statement in the PROCEDURE_SEC-
TION that includes the regression function to be

f=robust_regression(size,pred_size,a);

to invoke the robust regression function.
That’s all there is to it! These three changes will convert any AD Model builder template

from a nonlinear regression model to a robust nonlinear regression model.
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index value std.dev 1 2 3 4
1 Linf 5.6184e+01 3.6796e+00 1.0000
2 K 1.6818e-01 3.4527e-02 -0.9173 1.0000
3 t0 6.5129e-04 4.5620e-01 -0.5483 0.7724 1.0000
4 a 3.6144e-01 1.0721e-01 -0.1946 0.0367 -0.2095 1.0000

Figure 1.3: Robust Nonlinear regression with bad data set.
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The results for the robust regression fit to the bad data set are shown in Figure 1.3. The
estimate for L∞ is 56.18, with a standard deviation of 3.68, to give a 95% confidence interval
of about 56.18± 7.36. Both the parameter estimates and the confidence limits are much less
affected by the outliers for the robust regression estimates than they are for the least-squares
estimates. The parameter a is estimated to be equal to 0.36, which indicates that the robust
procedure has detected some moderately large outliers.

The results for the robust regression fit to the good data set are shown in Figure 1.4.
The estimates are almost identical to the least-square estimates for the same data. This is a
property of the robust estimates. They do almost as well as the least-square estimates when
the assumption of normally distributed errors in the statistical model is satisfied exactly.
They do much better than least-square estimates in the presence of moderate or large outliers.
You can lose only a little and you stand to gain a lot by using these estimators.
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index value std.dev 1 2 3 4
1 Linf 5.5707e+01 1.9178e+00 1.0000
2 K 1.7896e-01 1.9697e-02 -0.9148 1.0000
3 t0 2.1490e-01 2.0931e-01 -0.5604 0.7680 1.0000
4 a 7.0000e-01 3.2246e-05 -0.0001 0.0000 -0.0000 1.0000

Figure 1.4: Robust Nonlinear regression with good data set.
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1.14 Chemical engineering:
a chemical kinetics problem

This example may strike you as being fairly complicated. If so, you should compare it with
the original solution using the so-called sensitivity equations. The reference is [1], Chapter 8.
We consider the chemical kinetics problem introduced on page 233. This is a model defined
by a first order system of two ordinary differential equations.

ds1/dt = −θ1 exp
(
− θ2/T

)(
s1 − e−1000/T s22

)
/
(
1 + θ3 exp(−θ4/T )s1

)2
ds2/dt = 2θ1 exp

(
− θ2/T

)(
s1 − e−1000/T s22

)
/
(
1 + θ3 exp(−θ4/T )s1

)2
(1.4)

The differential equations describe the evolution over time of the concentrations of the
two reactants, s1 and s2. There are 10 initial parameters in the model: θ1, . . . , θ10. T is
the temperature at which the reaction takes place. To integrate the system of differential
equations, we require the initial concentrations of the reactants: s1(0) and s2(0) at time zero.

The reaction was carried out three times at temperatures of 200, 400, and 600 degrees.
For the first run, there were initially equal concentrations of the two reactants. The second
run initially consisted of only the first reactant, and the third run initially consisted of only
the second reactant. The initial concentrations of the reactants are known only approxi-
mately. See Table 1.1 for what they are. The unknown initial concentrations are treated as

Run 1 s1(0) = θ5 = 1± 0.05 s2(0) = θ6 = 1± 0.05
Run 2 s1(0) = θ7 = 1± 0.05 s2(0) = 0
Run 3 s1(0) = 0 s2(0) = θ8 = 1± 0.05

Table 1.1

parameters to be estimated with Bayesian prior distributions on them, reflecting the level
of certainty of their true values that we have. The concentrations of the reactants were not
measured directly. Rather, the mixture was analyzed by a “densitometer,” whose response
to the concentrations of the reactants is

y = 1 + θ9s1 + θ10s2

where θ9 = 1± 0.05 and θ10 = 2± 0.05. The differences between the predicted and observed
responses of the densitometer are assumed to be normally distributed, so least squares is
used to fit the model. Bard employs an “explicit” method for integrating these differential
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equations, that is, the equations are approximated by a finite difference scheme, such as

s1(tn+1) = s1(tn)− hθ1
exp

(
− θ2/T

)(
s1(tn)− e−1000/T s2(tn)2

)(
1 + θ3 exp(−θ4/T )s1(tn)

)2
s2(tn+1) = s2(tn) + 2hθ1

exp
(
− θ2/T

)(
s1(tn)− e−1000/T s2(tn)2

)(
1 + θ3 exp(−θ4/T )s1(tn)

)2 (1.5)

over the time period tn to tn+1 of length h. Equations (1.5) are called “explicit,” because the
values of s1 and s2 at time tn+1 are given explicitly in terms of the values of s1 and s2 at
time tn.

The advantage of using an explicit scheme for integrating the model differential equations
is that the derivatives of the model functions with respect to the model parameters also satisfy
differential equations. They are called “sensitivity equations” (see [1], pages 227–229). It is
possible to integrate these equations, as well as the model equations, to get values for the
derivatives. However, this involves generating a lot of extra code, as well as carrying out a
lot of extra calculations. Since with AD Model Builder it is not necessary to produce any
code for derivative calculations, it is possible to employ alternate schemes for integrating the
differential equations.

Let A = θ1 exp(−θ2/T ), B = exp(−1000/T ), and C = (1 + θ3 exp(−θ4/T )s1)
2. In terms

of A and C, we can replace the explicit finite difference scheme by the semi-implicit scheme

s1(tn+1) = s1(tn)− hA
(
s1(tn+1)−Bs22(tn+1)

)
/C

s2(tn+1) = s2(tn) + 2hA
(
s1(tn+1)−Bs2(tn)s2(tn+1)

)
/C (1.6)

Now let D = hA/C and solve equations (3) for s1(tn+1) and s2(tn+1) to obtain

s1(tn+1) =
(
s1(tn) +DBs2(tn)

)
/(1 +D)

s2(tn+1) =
(
s2(tn) + 2Ds1(tn)

)
/
(
1 + (2DBs2(tn))

)
(1.7)

Implicit and semi-implicit schemes tend to be more stable than explicit schemes over large
time steps and large values of some of the model parameters. This stability is especially im-
portant when fitting nonlinear models, because the algorithms for function minimization will
pick very large, or “bad,” values of the parameters from time to time, and the minimization
procedure will generally perform better when a more stable scheme is employed.

DATA_SECTION
init_matrix Data(1,10,1,3)
init_vector T(1,3) // the initial temperatures for the three runs
init_vector stepsize(1,3) // the stepsize to use for numerical integration
matrix data(1,3,1,10)
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matrix sample_times(1,3,1,10) // times at which reaction was sampled
vector x0(1,3) // the beginning time for each of the three

// runs
vector x1(1,3) // the ending time for each of the three runs
// for each of the three runs

PARAMETER_SECTION
init_vector theta(1,10) // the model parameters
matrix init_conc(1,3,1,2) // the initial concentrations of the two

// reactants over three time periods
vector instrument(1,2) // determines the response of the densitometer
matrix y_samples(1,10,1,2)// the predicted concentrations of the two

// reactants at the ten sampling periods
// obtained by integrating the differential
// equations

vector diff(1,10) // the difference between the observed and
// readings of the densitometer

objective_function_value f // the log_likelihood function
number bayes_part // the Bayesian contribution
number y2
number x_n
vector y_n(1,2)
vector y_n1(1,2)
number A // A B C D hold some common subexpressions
number B
number C
number D

PRELIMINARY_CALCS_SECTION
data=trans(Data); // it is more convenient to work with the transformed

// matrix
PROCEDURE_SECTION

// set up the begining and ending times for the three runs
x0(1)=0;
x1(1)=90;
x0(2)=0;
x1(2)=18;
x0(3)=0;
x1(3)=4.5;
// set up the sample times for each of the three runs
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sample_times(1).fill_seqadd(0,10); // fill with 0,10,20,...,90
sample_times(2).fill_seqadd(0,2); // fill with 0,2,4,...,18
sample_times(3).fill_seqadd(0,0.5); // fill with 0,0.5,1.0,...,4.5

// set up the initial concentrations of the two reactants for
// each of the three runs
init_conc(1,1)=theta(5);
init_conc(1,2)=theta(6);
init_conc(2,1)=theta(7);
init_conc(2,2)=0.0; // the initial concentrations is known to be 0
init_conc(3,1)=0.0; // the initial concentrations is known to be 0
init_conc(3,2)=theta(8);

// coefficients which determine the response of the densitometer
instrument(1)=theta(9);
instrument(2)=theta(10);
f=0.0;
for (int run=1;run<=3;run++)
{

// integrate the differential equations to get the predicted
// values for the y_samples
int nstep=(x1(run)-x0(run))/stepsize(run);
nstep++;
double h=(x1(run)-x0(run))/nstep; // h is the stepsize for integration

int is=1;
// get the initial conditions for this run
x_n=x0(run);
y_n=init_conc(run);
for (int i=1;i<=nstep+1;i++)
{
// gather common subexpressions
y2=y_n(2)*y_n(2);
A=theta(1)*exp(-theta(2)/T(run));
B=exp(-1000/T(run));
C=(1+theta(3)*exp(-theta(4)/T(run))*y_n(1));
C=C*C;
D=h*A/C;
// get the y vector for the next time step
y_n1(1)=(y_n(1)+D*B*y2)/(1.+D);
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y_n1(2)=(y_n(2)+2.*D*y_n(1))/(1.+(2*D*B*y_n(2)));

// if an observation occurred during this time period save
// the predicted value
if (is <=10)
{
if (x_n<=sample_times(run,is) && x_n+h >= sample_times(run,is))
{
y_samples(is++)=y_n;

}
}
x_n+=h; // increment the time step
y_n=y_n1; // update the y vector for the next step

}
diff=(1.0+y_samples*instrument)-data(run); //differences between the

// predicted and observed values of the densitometer
f+=diff*diff; // sum of squared differences

}
// take the log of f and multiply by nobs/2 to get log-likelihood
f=15.*log(f); // This is (number of obs)/2. It is wrong in Bard (pg 236).

// Add the Bayesian stuff
bayes_part=0.0;
for (int i=5;i<=9;i++)
{
bayes_part+=(theta(i)-1)*(theta(i)-1);

}
bayes_part+=(theta(10)-2)*(theta(10)-2);
f+=1./(2.*.05*.05)*bayes_part;

AD Model Builder produces a report containing values, standard deviations, and corre-
lation matrix of the parameter estimates. As discussed below, any parameter or group of
parameters can easily be included in this report. For models with a large number of param-
eters, this report can be a bit unwieldly, so options are provided to exclude parameters from
the report, if desired.

index value std.dev 1 2 3 4 5 6 7 8 9 10
1 theta 1.37e+00 2.09e-01 1
2 theta 1.12e+03 7.70e+01 0.95 1
3 theta 1.80e+00 7.95e-01 0.9 0.98 1
4 theta 3.58e+02 1.94e+02 0.91 0.98 0.99 1
5 theta 1.00e+00 4.49e-02 0.20 0.28 0.12 0.17 1
6 theta 9.94e-01 2.99e-02 -0.42 -0.35 -0.25 -0.22 -0.58 1
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7 theta 9.86e-01 2.59e-02 0.01 0.22 0.22 0.28 0.26 0.42 1
8 theta 1.02e+00 1.69e-02 -0.38 -0.34 -0.36 -0.30 0.09 0.63 0.34 1
9 theta 1.00e+00 2.59e-02 -0.02 -0.23 -0.23 -0.30 -0.28 -0.43 -0.98 -0.37 1

10 theta 1.97e+00 3.23e-02 0.44 0.37 0.40 0.32 -0.09 -0.65 -0.37 -0.93 0.40 1

1.15 Financial Modelling: a generalized autoregressive
conditional heteroskedasticity or garch model

Time series models are often used in financial modeling. For these models, the parameters
are often extremely badly determined. With the stable numerical environment produced by
AD Model Builder, it is a simple matter to fit such models.

Consider a time series of returns rt, where t = 0, . . . , T , available from some type of
financial instrument. The model assumptions are

rt = µ+ εt ht = a0 + a1ε
2
t−1 + a2ht−1 for 1 ≤ t ≤ T, a0 ≥ 0, a1 ≥ 0, a2 ≥ 0

where the εt are independent normally distributed random variables with mean 0 and vari-
ance ht. We assume ε0 = 0 and h0 =

∑T
i=0(ri− r̄)2/(T +1). There are four initial parameters

to be estimated for this model: µ, a0, a1, and a2. The log-likelihood function for the vector
rt is equal to a constant plus

−.5
T∑
t=1

(
log(ht) + (rt − µ)2/ht

)
DATA_SECTION
init_int T
init_vector r(0,T)
vector sub_r(1,T)
number h0

INITIALIZATION_SECTION
a0 .1
a1 .1
a2 .1

PARAMETER_SECTION
init_bounded_number a0(0.0,1.0)
init_bounded_number a1(0.0,1.0,2)
init_bounded_number a2(0.0,1.0,3)
init_number Mean
vector eps2(1,T)
vector h(1,T)
objective_function_value log_likelihood
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PRELIMINARY_CALCS_SECTION
h0=square(std_dev(r)); // square forms the element-wise square
sub_r=r(1,T); // form a subvector so we can use vector operations
Mean=mean(r); // calculate the mean of the vector r

PROCEDURE_SECTION
eps2=square(sub_r-Mean);
h(1)=a0+a2*h0;
for (int t=2;t<=T;t++)
{
h(t)=a0+a1*eps2(t-1)+a2*h(t-1);

}
// calculate minus the log-likelihood function
log_likelihood=.5*sum(log(h)+elem_div(eps2,h)); // elem_div performs

// element-wise division of vectors
RUNTIME_SECTION
convergence_criteria .1, .1, .001
maximum_function_evaluations 20, 20, 1000

We have used vector operations such as elem_div and sum to simplify the code. Of course,
the code could also have employed loops and element-wise operations. The parameter values
and standard deviation report for this model appears below.

index value std.dev 1 2 3 4
1 a0 1.6034e-04 2.3652e-05 1.0000
2 a1 9.3980e-02 2.0287e-02 0.1415 1.0000
3 a2 3.7263e-01 8.2333e-02 -0.9640 -0.3309 1.0000
4 Mean -1.7807e-04 3.0308e-04 0.0216 -0.1626 0.0144 1.0000

This example employs bounded initial parameters. Often it is necessary to put bounds on
parameters in nonlinear modeling, to ensure that the minimization is stable. In this example,
a0 is constrained to lie between 0.0 and 1.0:

init_bounded_number a0(0.0,1.0)
init_bounded_number a1(0.0,1.0,2)
init_bounded_number a2(0.0,1.0,3)

1.16 Carrying out the minimization in a number of phases

For linear models, one can simply estimate all the model parameters simultaneously. For
nonlinear models, often this simple approach does not work very well. It may be necessary
to keep some of the parameters fixed during the initial part of the minimization process,
and carry out the minimization over a subset of the parameters. The other parameters are
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included into the minimization process, in a number of phases until all of the parameters
have been included. AD Model Builder provides support for this multi-phase approach. In
the declaration of any initial parameter, the last number, if present, determines the phase of
the minimization during which this parameter is included (becomes active). If no number
is present, the initial parameter becomes active in phase 1. In this case, a0 has no phase
number and so becomes active in phase 1. a1 becomes active in phase 2, and a2 becomes
active in phase 3. In this example, phase 3 is the last phase of the optimization.

It is often convenient to modify aspects of the code depending on what phase of the
minimization procedure is the current phase, or on whether a particular initial parameter is
active. The function

current_phase()

returns an integer (an object of type int) that is the value of the current phase. The function

last_phase()

returns the value “true” ( 6= 0) if the current phase is the last phase and false (= 0) otherwise.
If xxx is the name of any initial parameter the function

active(xxx)

returns the value “true” if xxx is active during the current phase and false otherwise.
After the minimization of the objective function has been completed, AD Model Builder

calculates the estimated covariance matrix for the initial parameters, as well as any other
desired parameters that have been declared to be of sd_report type. Often, these additional
parameters may involve considerable additional computational overhead. If the values of
these parameters are not used in calculations proper, it is possible to only calculate them
during the standard deviations report phase.

sd_phase()

The sd_phase function returns the value “true” if we are in the standard deviations report
phase and “false” otherwise. It can be used in a conditional statement to determine whether
to perform calculations associated with some sd_report object.

When estimating the parameters of a model by a multi-phase minimization procedure,
the default behavior of AD Model Builder is to carry out the default number of function
evaluations until convergence is achieved in each stage. If we are only interested in the
parameter estimates obtained after the last stage of the minimization, it is often not necessary
to carry out the full minimization in each stage. Sometimes, considerable time can be saved
by relaxing the convergence criterion in the initial stages of the optimization.

The RUNTIME_SECTION allows the user to modify the default behavior of the function
minimizer during the phases of the estimation process:

RUNTIME_SECTION
convergence_criteria .1, .1, .001
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maximum_function_evaluations 20, 20, 1000

The convergence_criteria affects the criterion used by the function minimizer to decide
when the optimization process has occurred. The function minimizer compares the maximum
value of the vector of derivatives of the objective function, with respect to the independent
variables, to the numbers after the convergence_criteria keyword. The first number is
used in the first phase of the optimization, the second number in the second phase, and so
on. If there are more phases to the optimization than there are numbers, the last number
is used for the rest of the phases of the optimization. The numbers must be separated by
commas. The spaces are optional. The maximum_function_evaluations keyword controls
the maximum number of evaluations of the objective function that will be performed by the
function minimizer in each stage of the minimization procedure.

1.17 Natural resource management:
the Schaeffer-Pella-Tomlinson Model

It is typical of many models in natural resource management that the model tends to be
rather unstable numerically. In addition, some of the model parameters are often poorly
determined. Notwithstanding these difficulties, it is often necessary to make decisions about
resource management based on the analysis provided by these models. This example provides
a good opportunity for presenting some more advanced features of AD Model Builder that
are designed to overcome these difficulties.

The Schaeffer-Pella-Tomlinson model is employed in fisheries management. The model
assumes that the total biomass of an exploited fish stock satisfies an ordinary differential
equation of the form

dB

dt
= rB

(
1−

(
B
k

)m−1 )− FB where m > 1 (1.8)

([7], page 303), where B is the biomass, F is the instantaneous fishing mortality rate, r is a
parameter often referred to an the “intrinsic rate of increase,” k is the unfished equilibrium
stock size,

C = FB (1.9)

is the catch rate, and m is a parameter that determines where the maximum productivity
of the stock occurs. If the value of m is fixed at 2, the model is referred to as the “Scha-
effer model.” The explicit form of the difference equation corresponding to this differential
equation is

Bt+δ = Bt + rBtδ − rBt

(
Bt

k

)m−1
δ − FtBtδ (1.10)

To get a semi-implicit form of this difference equation that has better numerical stability
than the explicit version, we replace some of the terms Bt on the right hand side of 1.10 by
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Bt+δ, to get
Bt+δ = Bt + rBtδ − rBt+δ

(
Bt

k

)m−1
δ − FtBt+δδ (1.11)

We solve for Bt+δ to give

Bt+δ =
Bt(1 + rδ)

1 +
(
r(Bt/k)m−1 + Ft

)
δ

(1.12)

The catch Ct+δ over the period (t, t+ δ) is given by

Ct+δ = FtBt+δδ (1.13)

1.18 Bayesian considerations in the Pella-Tomlinson Model
The parameter k is referred to as the “carrying capacity” or the “unfished equilibrium biomass
level,” because it is the value that the biomass of the population will eventually assume if
there is no fishing. For a given value of k, the parameter m determines the level of maximum
productivity—that is, the level of biomass BMAX for which the removals from fishing can be
the greatest:

BMAX =
k

m−1
√
m

For m = 2, maximum productivity is obtained by that level of fishing pressure that
reduces the stock to 50% of the carrying capacity. For the data available in many real fisheries
problems, the parameter m is very poorly determined. It is common practice, therefore, to
simply assume that m = 2. Similarly, it is commonly assumed that the carrying capacity k
does not change over time, even though changes such as habitat degradation may well lead
to changes in k.

We want to construct a statistical model where the carrying capacity can be varying
slowly over time if there appears to be any information in the fisheries data supporting this
hypothesis. What is meant by “slowly”? The answer to this question will depend on the
particular situation. For our purposes, “slowly” means “slowly enough” so that the model
has some chance of supplying a useful analysis of the situation at hand. We refer to this as
“the assumption of manageability.” The point is that since we are going to use this model
anyways to try and mange a resource, we may as well assume that the model’s assumptions
are satisfied—at least well enough that we have some hope of success. This may seem
extremely arbitrary, and it is. However, it is not as arbitrary as assuming that the carrying
capacity is constant.

We assume that ki+1 = ki exp(κi), where the κi are independent normally distributed
random variables with mean 0, and that log(m − 1) is normally distributed with mean 0.
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The parameters log(k) are assumed to have the structure of a random walk, which is the
simplest type of time series. This Bayesian approach is a very simple method for including
a time series structure into the parameters of a nonlinear model.

We don’t know the true catches Ci in each year. What we have are estimates Cobs
i of the

catch. We assume that the quantities log(Cobs
i /Ci) are normally distributed with mean 0.

Finally, we must deal with the fishing mortality F . Estimates of F are not obtained
directly. Instead, what is observed is an index of fishing mortality—in this case, fishing
effort. We assume that for each year, we have an estimate Ei of fishing effort and that
the fishing mortality rate Fi in year i satisfies the relationship Fi = qEi exp(ηi), where q
is a parameter referred to as the “catchability” and the ηi are normally distributed random
variables with mean 0.

We assume that the variance of the ηi is 10 times the variance in the observed catch
errors, and that the variance of the κi is 0.1 times the variance in the observed catch errors.
We assume that the variance in log(m − 1) is 0.25. Then, given the data, the Bayesian
posterior distribution for the model parameters is proportional to

− (3n− 1)/2 log

(
n∑
i=1

(
log(Cobs

i )− log(Ci)
)2

+ .1
n∑
i=1

η2i + 10
n∑
i=2

κ2i

)
− 2. log(m− 1)2 (1.14)

The number of initial parameters in the model (that is, the number of independent
variables in the function to be minimized) is 2n+ 4. For the halibut data, there are 56 years
of data, which gives 116 parameters. As estimates of the model parameters, we use the mode
of the posterior distribution, which can by found by minimizing −1 times expression (1.8).
The covariance matrix of the model parameters are estimated by computing the inverse of
the Hessian of expression (1.8) at the minimum. The template for the model follows. To
improve the readability, the entire template has been included. The various sections are
discussed below.

DATA_SECTION
init_int nobs;
init_matrix data(1,nobs,1,3)
vector obs_catch(1,nobs);
vector cpue(1,nobs);
vector effort(1,nobs);
number avg_effort

INITIALIZATION_SECTION
m 2.
beta 1.
r 1.

PARAMETER_SECTION
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init_bounded_number q(0.,1.)
init_bounded_number beta(0.,5.)
init_bounded_number r(0.,5,2)
init_number log_binit(2)
init_bounded_dev_vector effort_devs(1,nobs,-5.,5.,3)
init_bounded_number m(1,10.,4)
init_bounded_vector k_devs(2,nobs,-5.,5.,4)
number binit
vector pred_catch(1,nobs)
vector biomass(1,nobs)
vector f(1,nobs)
vector k(1,nobs)
vector k_trend(1,nobs)
sdreport_number k_1
sdreport_number k_last
sdreport_number k_change
sdreport_number k_ratio
sdreport_number B_projected
number tmp_mort;
number bio_tmp;
number c_tmp;
objective_function_value ff;

PRELIMINARY_CALCS_SECTION
// get the data out of the data matrix into
obs_catch=column(data,2);
cpue=column(data,3);
// divide the catch by the cpue to get the effort
effort=elem_div(obs_catch,cpue);
// normalize the effort and save the average
double avg_effort=mean(effort);
effort/=avg_effort;
cout << " beta" << beta << endl;

PROCEDURE_SECTION
// calculate the fishing mortality
calculate_fishing_mortality();
// calculate the biomass and predicted catch
calculate_biomass_and_predicted_catch();
// calculate the objective function
calculate_the_objective_function();
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FUNCTION calculate_fishing_mortality
// calculate the fishing mortality
f=q*effort;
if (active(effort_devs)) f=elem_prod(f,exp(effort_devs));

FUNCTION calculate_biomass_and_predicted_catch
// calculate the biomass and predicted catch
if (!active(log_binit))
{
log_binit=log(obs_catch(1)/(q*effort(1)));

}
binit=exp(log_binit);
biomass[1]=binit;
if (active(k_devs))
{
k(1)=binit/beta;
for (int i=2;i<=nobs;i++)
{
k(i)=k(i-1)*exp(k_devs(i));

}
}
else
{
// set the whole vector equal to the constant k value
k=binit/beta;

}
// only calculate these for the standard deviation report
if (sd_phase)
{
k_1=k(1);
k_last=k(nobs);
k_ratio=k(nobs)/k(1);
k_change=k(nobs)-k(1);

}
// two time steps per year desired
int nsteps=2;
double delta=1./nsteps;
// Integrate the logistic dynamics over n time steps per year
for (int i=1; i<=nobs; i++)
{
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bio_tmp=1.e-20+biomass[i];
c_tmp=0.;
for (int j=1; j<=nsteps; j++)
{
//This is the new biomass after time step delta
bio_tmp=bio_tmp*(1.+r*delta)/
(1.+ (r*pow(bio_tmp/k(i),m-1.)+f(i))*delta );

// This is the catch over time step delta
c_tmp+=f(i)*delta*bio_tmp;

}
pred_catch[i]=c_tmp; // This is the catch for this year
if (i<nobs)
{
biomass[i+1]=bio_tmp;// This is the biomass at the beginning of the next

} // year
else
{
B_projected=bio_tmp; // get the projected biomass for std dev report

}
}

FUNCTION calculate_the_objective_function
if (!active(effort_devs))
{
ff=nobs/2.*log(norm2(log(obs_catch)-log(1.e-10+pred_catch)));

}
else if(!active(k_devs))
{
ff= .5*(size_count(obs_catch)+size_count(effort_devs))*
log(norm2(log(obs_catch)-log(1.e-10+pred_catch))
+0.1*norm2(effort_devs));

}
else
{
ff= .5*( size_count(obs_catch)+size_count(effort_devs)
+size_count(k_devs) )*
log(norm2(log(obs_catch)-log(pred_catch))
+ 0.1*norm2(effort_devs)+10.*norm2(k_devs));

}
// Bayesian contribution for Pella Tomlinson m

1-30



ff+=2.*square(log(m-1.));
if (current_phase()<3)
{
ff+=1000.*square(log(mean(f)/.4));

}

The data are contained in three columns, with the catch and catch per unit effort data
contained in the second and third columns. The matrix data is defined in order to read the
data. The second and third columns of data, which is what we are interested in, will then
be put into the vectors obs_catch and cpue. (Later, we get the fishing effort by dividing
the obs_catch by the cpue.)

DATA_SECTION
init_int nobs
init_matrix data(1,nobs,1,3)
vector obs_catch(1,nobs)
vector cpue(1,nobs)
vector effort(1,nobs)
number avg_effort

The INITIALIZATION_SECTION is used to define default values for some model parameters if
the standard default provided by AD Model Builder is not acceptable. If the model finds the
parameter file (whose default name is admodel.par), it will read in the initial values for the
parameters from there. Otherwise, the default values will be used—unless the parameters
appear in the INITIALIZATION_SECTION, in which case, those values will be used.

INITIALIZATION_SECTION
m 2.
beta 1.
r 1.

The PARAMETER_SECTION for this model introduces several new features of ADModel Builder.
The statement

init_bounded_number r(0.,5.,2)

declares an initial parameter whose value will be constrained to lie between 0.0 and 5.0. It
is often necessary to put bounds on the initial parameters in nonlinear models to get stable
model performance. This is accomplished in AD Model Builder simply by declaring the
initial parameter to be bounded and providing the desired bounds. The default initial value
for a bounded object is the average of the lower and upper bounds.

The third number ‘2’ in the declaration determines that this initial parameter will not
be made active until the second phase of the minimization. This introduces the concept of
“phases” in the minimization process.
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As soon as nonlinear statistical models become a bit complicated, one often finds that
simply attempting to estimate all the parameters simultaneously does not work very well.
In short, “You can’t get there from here.” A better strategy is to keep some of the param-
eters fixed and to first minimize the function with respect to the other parameters. More
parameters are added in a stepwise relaxation process. In AD Model Builder, each step of
this relaxation process is termed a “phase.” The parameter r is not allowed to vary until
the second phase. Initial parameters that are allowed to vary will be termed “active.” In the
first phase, the active parameter are beta and q. The default phase for an initial parameter
is phase 1 if no phase number is included in its declaration. The phase number for an initial
parameter is the last number in the declaration for that parameter. The general order for
the arguments in the definition of any initial parameter is the size data for a vector or ma-
trix object (if needed), the bounds for a bounded object (if needed), followed by the phase
number (if desired).

It is often a difficult problem to decide what the order of relaxation for the initial pa-
rameters should be. This must sometimes be done by trial and error. However, AD Model
Builder makes the process a lot simpler. One only needs to change the phase numbers of the
initial parameters in the PARAMETER_SECTION and recompile the program.

Often in statistical modeling, it is useful to regard a vector of quantities xi as consisting
of an overall mean, µ, and a set of deviations from that mean, δi, so that

xi = µ+ δi where
∑
i

δi = 0

AD Model Builder provides support for this modeling construction with the

init_bounded_dev_vector

declaration. The components of an object created by this declaration will automatically sum
to zero without any user intervention. The line

init_bounded_dev_vector effort_devs(1,nobs,-5.,5.,3)

declares effort_devs to be this kind of object. The bounds -5.,5. control the range of
the deviations. Putting reasonable bounds on such deviations often improves the stability
of the estimation procedure.

AD Model Builder has sdreport_number, sdreport_vector, and sdreport_matrix dec-
larations in the PARAMETER_SECTION. These objects behave the same as number, vector, and
matrix objects, with the additional property that they are included in the report of the es-
timated standard deviations and correlation matrix.

For example, merely by including the statement sdreport_number B_projected, one
can obtain the estimated standard deviation of the biomass projection for the next year. (Of
course, you must also set B_projected equal to the projected biomass. This is done in the
PROCEDURE_SECTION.)
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PARAMETER_SECTION
init_bounded_number q(0.,1.)
init_bounded_number beta(0.,5.)
init_bounded_number r(0.,5,2)
init_number log_binit(2)
init_bounded_dev_vector effort_devs(1,nobs,-5.,5.,3)
init_bounded_number m(1,10.,4)
init_bounded_vector k_devs(2,nobs,-5.,5.,4)
number binit
vector pred_catch(1,nobs)
vector biomass(1,nobs)
vector f(1,nobs)
vector k(1,nobs)
vector k_trend(1,nobs)
sdreport_number k_1
sdreport_number k_last
sdreport_number k_change
sdreport_number k_ratio
sdreport_number B_projected
number tmp_mort;
number bio_tmp;
number c_tmp;
objective_function_value ff;

The PRELIMINARY_CALCS_SECTION carries out a few simple operations on the data. The
model expects to have catch and effort data, but the input file contained catch and “cpue”
(“catch/effort”) data. We divide the catch data by the cpue data to get the effort data.
The autodif operation elem_div, which performs element-wise divisions of vector objects,
is used. As usual, the same thing could have been accomplished by employing a loop and
writing element-wise code. The effort data are then normalized—that is, they are divided by
their average so that their average becomes 1. This is done so that we have a good idea what
the catchability parameter q should be to give reasonable values for the fishing mortality
rate (since F = qE).

extract a column from a matrix Notice that the PRELIMINARY_CALCS_SECTION section is
C++ code, so that statements must be ended with a ;.

PRELIMINARY_CALCS_SECTION
// get the data out of the data matrix into
obs_catch=column(data,2);
cpue=column(data,3);
// divide the catch by the cpue to get the effort
effort=elem_div(obs_catch,cpue);
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// normalize the effort and save the average
double avg_effort=mean(effort);
effort/=avg_effort;

The PROCEDURE_SECTION contains several new AD Model Builder features. Some have to do
with the notion of carrying out the minimization in a number of steps or phases. The line

if (active(effort_devs)) f=elem_prod(f,exp(effort_devs));

introduces the active function. This function can be used on any initial parameter and will
return a value “true” if that parameter is active in the current phase. The idea here is that
if the initial parameters effort_devs are not active, then since their value is zero, carrying
out the calculations will have no effect, and we can save time by avoiding the calculations.
The active function is also used in the statement

if (!active(log_binit))
{
log_binit=log(obs_catch(1)/(q*effort(1)));

}

The idea is that if the log_binit initial parameter (this is the logarithm of the biomass
at the beginning of the first year) is not active, then we set it equal to the value that
produces the observed catch (using the relationship C = qEB, such that B = C/(qE). The
active function is also used in the calculations of the objective function, so that unnecessary
calculations are avoided.

The following code helps to deal with convergence problems in this type of nonlinear
model. The problem is that the starting parameter values are often so bad that the op-
timization procedure will try to make the population very large and the exploitation rate
very small, because this is the best local solution near the starting parameter values. To
circumvent this problem, we include a penalty function to keep the average value of the
fishing mortality rate f close to 0.2 during the first two phases of the minimization. In the
final phase, the size of the penalty term is reduced to a very small value. The function
current_phase() returns the value of the current phase of the minimization:

if (current_phase()<3)
{
ff+=1000.*square(log(mean(f)/.4));

}

1.19 Using functions to improve code organization
Subroutines or functions are used to improve the organization of the code. The code for the
main part of the PROCEDURE_SECTION that invokes the functions should be placed at the top
of the PROCEDURE_SECTION.
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PROCEDURE_SECTION
// calculate the fishing mortality
calculate_fishing_mortality();
// calculate the biomass and predicted catch
calculate_biomass_and_predicted_catch();
// calculate the objective function
calculate_the_objective_function();

There are three user-defined functions called at the beginning of the PROCEDURE_SECTION.
The code to define the functions comes next. To define a function whose name is, say, name,
the template directive FUNCTION name is used. Notice that no parentheses () are used in
the definition of the function, but to call the function, the statement takes the form name();

1.20 A fisheries catch-at-age model
This section describes a simple catch-at-age model. The data input to this model include
estimates of the numbers at age caught by the fishery each year and estimates the fishing
effort each year. This example introduces AD Model Builder’s ability to automatically cal-
culate profile likelihoods for carrying out Bayesian inference. To cause the profile likelihood
calculations to be carried out, use the -lprof command line argument.

Let i index fishing years 1 ≤ i ≤ n and j index age classes, with 1 ≤ j ≤ r. The
instantaneous fishing mortality rate is assumed to have the form Fij = qEisj exp(δi), where
q is called the “catchability,” Ei is the observed fishing effort, sj is an age-dependent effect
termed the “selectivity,” and the δi are deviations from the expected relationship between
the observed fishing effort and the resulting fishing mortality. The δi are assumed to be
normally distributed, with mean 0. The instantaneous natural mortality rate M is assumed
to be independent of year and age class. It is not estimated in this version of the model. The
instantaneous total mortality rate is given by Zij = Fij + M . The survival rate is given by
Sij = exp(−Zij). The number of age-class j fish in the population in year i is denoted by Nij.
The relationship Ni+1,j+1 = NijSij is assumed to hold. Note that using this relationship, if
one knows Sij, then all the Nij can be calculated from knowledge of the initial population
in year 1, N11, N12, . . . , N1r and knowledge of the recruitment in each year N21, N31, . . . Nn1.

The purpose of the model is to estimate quantities of interest to managers, such as the
population size and exploitation rates, and to make projections about the population. In
particular, we can get an estimate of the numbers of fish in the population in year n+ 1 for
age classes 2 or greater from the relationship Nn+1,j+1 = NnjSnj. If we have estimates mj

for the mean weight at age j, then the projected biomass level Bn+1 of age class 2+ fish for
year n+ 1 can be computed from the relationship Bn+1 =

∑r
j=2mjNn+1,j.

Besides getting a point estimate for quantities of interest like Bn+1, we also want to get
an idea of how well determined the estimate is. AD Model Builder has completely automated
the process of deriving good confidence limits for these parameters in a Bayesian context.
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One simply needs to declare the parameter to be of type likeprof_number. The results are
given in Section 1.21.

The code for the catch-at-age model is:

DATA_SECTION
// the number of years of data
init_int nyrs
// the number of age classes in the population
init_int nages
// the catch-at-age data
init_matrix obs_catch_at_age(1,nyrs,1,nages)
//estimates of fishing effort
init_vector effort(1,nyrs)
// natural mortality rate
init_number M
// need to have relative weight at age to calculate biomass of 2+
vector relwt(2,nages)

INITIALIZATION_SECTION
log_q -1
log_P 5

PARAMETER_SECTION
init_number log_q(1) // log of the catchability
init_number log_P(1) // overall population scaling parameter
init_bounded_dev_vector log_sel_coff(1,nages-1,-15.,15.,2)
init_bounded_dev_vector log_relpop(1,nyrs+nages-1,-15.,15.,2)
init_bounded_dev_vector effort_devs(1,nyrs,-5.,5.,3)
vector log_sel(1,nages)
vector log_initpop(1,nyrs+nages-1);
matrix F(1,nyrs,1,nages) // the instantaneous fishing mortality
matrix Z(1,nyrs,1,nages) // the instantaneous total mortality
matrix S(1,nyrs,1,nages) // the survival rate
matrix N(1,nyrs,1,nages) // the predicted numbers at age
matrix C(1,nyrs,1,nages) // the predicted catch at age
objective_function_value f
sdreport_number avg_F
sdreport_vector predicted_N(2,nages)
sdreport_vector ratio_N(2,nages)
likeprof_number pred_B

PRELIMINARY_CALCS_SECTION
// this is just to invent some relative average
// weight numbers
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relwt.fill_seqadd(1.,1.);
relwt=pow(relwt,.5);
relwt/=max(relwt);

PROCEDURE_SECTION
// example of using FUNCTION to structure the procedure section
get_mortality_and_survival_rates();

get_numbers_at_age();

get_catch_at_age();

evaluate_the_objective_function();

FUNCTION get_mortality_and_survival_rates
// calculate the selectivity from the sel_coffs
for (int j=1;j<nages;j++)
{
log_sel(j)=log_sel_coff(j);

}
// the selectivity is the same for the last two age classes
log_sel(nages)=log_sel_coff(nages-1);

// This is the same as F(i,j)=exp(log_q)*effort(i)*exp(log_sel(j));
F=outer_prod(mfexp(log_q)*effort,mfexp(log_sel));
if (active(effort_devs))
{
for (int i=1;i<=nyrs;i++)
{
F(i)=F(i)*exp(effort_devs(i));

}
}
// get the total mortality
Z=F+M;
// get the survival rate
S=mfexp(-1.0*Z);

FUNCTION get_numbers_at_age
log_initpop=log_relpop+log_P;
for (int i=1;i<=nyrs;i++)
{
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N(i,1)=mfexp(log_initpop(i));
}
for (int j=2;j<=nages;j++)
{
N(1,j)=mfexp(log_initpop(nyrs+j-1));

}
for (i=1;i<nyrs;i++)
{
for (j=1;j<nages;j++)
{
N(i+1,j+1)=N(i,j)*S(i,j);

}
}
// calculated predicted numbers at age for next year
for (j=1;j<nages;j++)
{
predicted_N(j+1)=N(nyrs,j)*S(nyrs,j);
ratio_N(j+1)=predicted_N(j+1)/N(1,j+1);

}
// calculate predicted biomass for profile
// likelihood report
pred_B=predicted_N *relwt;

FUNCTION get_catch_at_age
C=elem_prod(elem_div(F,Z),elem_prod(1.-S,N));

FUNCTION evaluate_the_objective_function
// penalty functions to ‘‘regularize ’’ the solution
f+=.01*norm2(log_relpop);
avg_F=sum(F)/double(size_count(F));
if (last_phase())
{
// a very small penalty on the average fishing mortality
f+= .001*square(log(avg_F/.2));

}
else
{
// use a large penalty during the initial phases to keep the
// fishing mortality high
f+= 1000.*square(log(avg_F/.2));
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}
// errors in variables type objective function with errors in
// the catch at age and errors in the effort fishing mortality
// relationship
if (active(effort_devs)
{
// only include the effort_devs in the objective function if
// they are active parameters
f+=0.5*double(size_count(C)+size_count(effort_devs))
* log( sum(elem_div(square(C-obs_catch_at_age),.01+C))
+ 0.1*norm2(effort_devs));

}
else
{
// objective function without the effort_devs
f+=0.5*double(size_count(C))
* log( sum(elem_div(square(C-obs_catch_at_age),.01+C)));

}
REPORT_SECTION
report << "Estimated numbers of fish " << endl;
report << N << endl;
report << "Estimated numbers in catch " << endl;
report << C << endl;
report << "Observed numbers in catch " << endl;
report << obs_catch_at_age << endl;
report << "Estimated fishing mortality " << endl;
report << F << endl;

This model employs several instances of the init_bounded_dev_vector type. This type
consists of a vector of numbers that sum to zero—that is, they are deviations from a common
mean, and are bounded. For example, the quantities log_relpop are used to parameterize
the logarithm of the variations in year class strength of the fish population. Putting bounds
on the magnitude of the deviations helps to improve the stability of the model. The bounds
are from −15.0 to 15.0, which gives the estimates of relative year class strength a dynamic
range of exp(30.0).

The FUNCTION keyword has been employed a number of times in the PARAMETER_SECTION
to help structure the code. A function is defined simply by using the FUNCTION keyword
followed by the name of the function.

FUNCTION get_mortality_and_survival_rates

Don’t include the parentheses or semicolon there. To use the function, simply write its name
in the procedure section.
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get_mortality_and_survival_rates();

You must include the parentheses and the semicolon here.
The REPORT_SECTION shows how to generate a report for an AD Model Builder program.

The default report generating machinery utilizes the C++ “stream formalism.” You don’t
need to know much about streams to make a report, but a few comments are in order. The
stream formalism associates a stream object with a file. In this case, the stream object
associated with the AD Model Builder report file is report. To write an object xxx into the
report file, you insert the line

report << xxx;

into the REPORT_SECTION. If you want to skip to a new line after writing the object, you can
include the stream manipulator endl as in

report << "Estimated numbers of fish " << endl;

Notice that the stream operations know about common C objects, such as strings, so that
it is a simple matter to put comments or labels into the report file.

1.21 Bayesian inference and the profile likelihood

AD Model Builder enables one to quickly build models with large numbers of parameters.
This is especially useful for employing Bayesian analysis. Traditionally, however, it has been
difficult to interpret the results of analysis using such models. In a Bayesian context, the
results are represented by the posterior probability distribution for the model parameters.
To get exact results from the posterior distribution, it is necessary to evaluate integrals
over large-dimensional spaces. This can be computationally intractable. AD Model Builder
provides approximations to these integrals in the form of the profile likelihood. The profile
likelihood can be used to estimate for extreme values (such as estimating a value β so that
for a parameter b, the probability that b < β ≈ 0.10, or the probability that b > β ≈ 0.10)
for any model parameter. To use this facility, simply declare the parameter of interest to
be of type likeprof_number in the PARAMETER_SECTION and assign the correct value to the
parameter in the PROCEDURE_SECTION.

The code for the catch-at-age model estimates the profile likelihood for the projected
biomass of age class 2+ fish. (Age class 2+ has been used to avoid the extra problem of
dealing with the uncertainty of the recruitment of age class 1 fish.) As a typical application
of the method, the user of the model can estimate the probability of biomass of fish for next
year being larger or smaller than a certain value. Estimates like these are obviously of great
interest to managers of natural resources.

The profile likelihood report for a variable is in a file with the same name as the variable
(truncated to eight letters, if necessary, with the suffix .PLT appended). For this example,
the report is in the file PRED_B.PLT. Part of the file is shown here:
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pred_B:
Profile likelihood
-1411.23 1.1604e-09
-1250.5 1.71005e-09
-1154.06 2.22411e-09
................... // skip some here
...................
278.258 2.79633e-05
324.632 5.28205e-05
388.923 6.89413e-05
453.214 8.84641e-05
517.505 0.0001116
581.796 0.000138412
...................
...................
1289 0.000482459
1353.29 0.000494449
1417.58 0.000503261
1481.87 0.000508715
1546.16 0.0005107
1610.45 0.000509175
1674.74 0.000504171
1739.03 0.000490788
1803.32 0.000476089
1867.61 0.000460214
1931.91 0.000443313
1996.2 0.000425539
2060.49 0.000407049
2124.78 0.000388
2189.07 0.00036855
...................
...................
4503.55 2.27712e-05
4599.98 2.00312e-05
4760.71 1.48842e-05
4921.44 1.07058e-05
5082.16 7.45383e-06
...................
...................
6528.71 6.82689e-07
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6689.44 6.91085e-07
6850.17 7.3193e-07
Minimum width confidence limits:

significance level lower bound upper bound
0.90 572.537 3153.43
0.95 453.214 3467.07
0.975 347.024 3667.76

One sided confidence limits for the profile likelihood:

The probability is 0.9 that pred_B is greater than 943.214
The probability is 0.95 that pred_B is greater than 750.503
The probability is 0.975 that pred_B is greater than 602.507

The probability is 0.9 that pred_B is less than 3173.97
The probability is 0.95 that pred_B is less than 3682.75
The probability is 0.975 that pred_B is less than 4199.03

The file contains the probability density function and the approximate confidence limits
for the the profile likelihood and the normal approximation. Since the format is the same
for both, we only discuss the profile likelihood here. The first part of the report contains
pairs of numbers (xi, yi), which consist of values of the parameter in the report (in this case,
PRED_B) and the estimated value for the probability density associated with that parameter
at the point. The probability that the parameter x lies in the interval xr ≤ x ≤ xs, where
xr < xs, can be estimated from the sum

s∑
i=r

(xi+1 − xi)yi.

The reports of the one and two-sided confidence limits for the parameter were produced
this way. Also, a plot of yi versus xi gives the user an indication of what the probability
distribution of the parameter looks like. (See Figure 1.5.)

The profile likelihood indicates the fact that the biomass cannot be less than zero. The
normal approximation is not very useful for calculating the probability that the biomass
is very low—a question of great interest to managers, who are probably not going to be
impressed by the knowledge that there is an estimated probability of 0.975 that the biomass
is greater than −52.660.

One sided confidence limits for the normal approximation

The probability is 0.9 that pred_B is greater than 551.235
The probability is 0.95 that pred_B is greater than 202.374
The probability is 0.975 that pred_B is greater than -52.660
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Figure 1.5: Predicted biomass of (2+) fish ×103.

1.22 Saving the output from profile likelihood
to use as starting values for mcmc analysis

If the profile likelihood calculations are carried out with the -prsave option, the values of the
independent variables for each point on the profile are saved in a file named, say, xxx.pvl,
where xxx is the name of the variable being profiled.

#Step -8
#num sigmas -27
-2.96325 6.98069 -2.96893 -1.15811 0.417864 1.5352 1.50556
0.668417 1.29106 2.04238 1.85167 1.02342 1.03264 1.35247
1.5832 1.87033 1.67212 0.984254 -0.58013 -8.10159 0.757686
0.958038 0.414446 -1.48443 -2.57572 -4.09184 -0.869426 -0.545055
-0.333125 -0.350978 -0.487261 -0.123192 -0.158569 -0.434328
-0.609651 -0.684244 -0.405214 5.00104
#Step -7
#num sigmas -22
// .............................

#Step 7
#num sigmas 22
-5.94034 9.29211 -2.6122 0.0773101 1.54853 1.91895 0.578923
-1.51152 0.0124827 0.712157 0.520084 -0.202059 -0.0505122
0.284112 0.469956 0.731273 0.664325 0.642344 0.691073
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-1.10233 -0.362781 0.034522 0.0127999 -0.538117 -0.575466
-1.94386 -0.544077 -0.0349702 0.349352 0.355073 0.237236
0.335559 0.177427 -0.0507647 -0.167382 -0.303103 -0.249956 -0.104393
#Step 8
#num sigmas 27
-6.09524 9.43103 -2.59874 0.0930842 1.55938
1.91285 0.561478 -1.52804 -0.0139936 0.687758 0.502089
-0.212203 -0.0519722 0.287149 0.474422 0.739316 0.678415
0.663857 0.71933 -1.07637 -0.387684 0.0146463 0.00647923
-0.530625 -0.566471 -1.93414 -0.521944 -0.0111346 0.372352
0.372706 0.247599 0.333505 0.171122 -0.0585298 -0.177735
-0.319115 -0.273111 -0.135715

To use the values as a starting point for the mcmc analysis, use a text editor to put the
desired starting values in a file by themselves. Suppose that the file name is mcmc.dat. Run
the mcmc analysis with the option -mcpin mcmc.dat and it will begin the mcmc analysis
from that file.

1.23 The profile likelihood calculations
We have been told that the profile likelihood as calculated in ADModel Builder for dependent
variables may differ from that calculated by other authors. This section will clarify what we
mean by the term and will motivate our calculation.

Let (x1, . . . , xn) be n independent variables, f(x1, . . . , xn) be a probability density func-
tion, and g denote a dependent variable—that is, a real valued function of (x1, . . . , xn). The
profile likelihood calculation for g is intended to produce an approximation to the probability
density function for g.

Consider first the case, where g is equal to one of the independent variables, say g = x1.
In this simple case, the marginal distribution of x1 is give by the integral∫

f(x1, ..., xn) dx2dx3 · · · dxn (1.15)

The use of the profile likelihood in this case is based on the assumption (or hope) that
there exists a constant λ independent of x1 such that λmaxx2,...,xn{f(x1, ..., xn)} is a good
approximation to this integral.

This approach should be useful for a lot of applications based on the fact that the central
limit theorem implies that for a lot of observations, the posterior probability distribution is
more or less well approximated by a multivariate normal distribution, and for such distribu-
tions, the assumptions holds exactly. So the profile likelihood is calculated by calculating the
conditional maximum of the likelihood function and then normalizing it so that it integrates
to 1.
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For an arbitrary dependent variable, the situation is a bit more complicated. A good
approximation to a probability distribution should have the property of parameter invariance,
that is, Pr{a ≤ x ≤ b} = Pr{h(a) ≤ h(x) ≤ h(b)} for any monotonically increasing
function h. To achieve the property of parameter invariance, we modify the definition of
profile likelihood for dependent variables.

Fix a value g0 for g and consider the integral∫
{x:g0−ε/2≤g(x)≤g0+ε/2}

f(x1, . . . , xn) dx1dx2 · · · dxn

which is the probability that g(x) has a value between g0 − ε/2 and g0 + ε/2. This prob-
ability depends on two quantities, the value of f(x) and the thickness of the region being
integrated over. We approximate f(x) by its maximum value x̂(g) = max{x:g(x)=g0}{f(x)}.
For the thickness, we have g(x̂ + h) ≈ g(x̂) + 〈∇g(x̂), h〉 = ε/2, where h is a vector per-
pendicular to the level set of g at x̂. However, ∇g is also perpendicular to the level set,
so 〈∇g(x̂), h〉 = ‖∇g(x̂)‖‖h‖, such that ‖h‖ = ε/(2‖g(x̂)‖). Thus, the integral is approx-
imated by εf(x̂)/‖∇g(x̂)‖. Taking the derivative with respect to ε yields f(x̂)/‖∇g(x̂)‖,
which is the profile likelihood expression for a dependent variable. For an independent vari-
able, ‖∇g(x̂)‖ = 1, so our definition of the profile likelihood corresponds to the usual one in
this case.

1.24 Modifying the profile likelihood
approximation procedure

The functions set_stepnumber() and set_stepsize() can be used to modify the number
of points used to approximate the profile likelihood, or to change the stepsize between the
points. This can be carried out in the PRELIMINARY_CALCS_SECTION. If u has been declared
to be of type likeprof_number,

PRELIMINARY_CALCS_SECTION
u.set_stepnumber(10); // default value is 8
u.set_stepsize(0.2); // default value is 0.5

will set the number of steps equal to 21 (from −10 to 10) and will set the step size equal to
0.2 times the estimated standard deviation for the parameter u.

1.25 Changing the default file names
for data and parameter input

The following code fragment illustrates how the files used for input of the data and parameter
values can be changed. This code has been taken from the example catage.tpl and modified.
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In the DATA_SECTION, the data are first read in from the file catch.dat. Then the effort data
are read in from the file effort.dat. The remainder of the data are read in from the file
catch.dat. It is necessary to save the current file position in an object of type streampos.
This object is used to position the file properly. The escape sequence !! can be used to
include one line of the user’s code into the DATA_SECTION or PARAMETER_SECTION. This is
more compact than the LOCAL_CALCS construction.

DATA_SECTION
// will read data from file catchdat.dat
!! ad_comm::change_datafile_name("catchdat.dat");
init_int nyrs
init_int nages
init_matrix obs_catch_at_age(1,nyrs,1,nages)
// now read the effort data from the file effort.dat and save the current
// file position in catchdat.dat in the object tmp
!! streampos tmp = ad_comm::change_datafile_name("effort.dat");
init_vector effort(1,nyrs)
// now read the rest of the data from the file catchdat.dat
// including the ioption argument tmp will reset the file to that position
!! ad_comm::change_datafile_name("catchdat.dat",tmp);
init_number M

// ....

PARAMETER_SECTION
// will read parameters from file catch.par
!! ad_comm::change_parfile_name("catch.par");

1.26 Using the subvector operation to avoid writing loops

If v is a vector object, then for integers l and u, the expression v(l,u) is a vector object
of the same type, with minimum valid index l and maximum valid index u. (Of course,
l and u must be within the valid index range for v, and l must be less than or equal to u.)
The subvector formed by this operation can be used on both sides of the equals sign in
an arithmetic expression. The number of loops that must be written can be significantly
reduced in this manner. We shall use the subvector operator to remove some of the loops
in the catch-at-age model code.

// calculate the selectivity from the sel_coffs
for (int j=1;j<nages;j++)
{
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log_sel(j)=log_sel_coff(j);
}
// the selectivity is the same for the last two age classes
log_sel(nages)=log_sel_coff(nages-1);

// same code using the subvector operation
log_sel(1,nage-1)=log_sel_coff;
// the selectivity is the same for the last two age classes
log_sel(nages)=log_sel_coff(nages-1);

Notice that log_sel(1,nage-1) is not a distinct vector from log_sel. This means that an
assignment to log_sel(1,nage-1) is an assignment to a part of log_sel. The next example
is a bit more complicated. It involves taking a row of a matrix to form a vector, forming a
subvector, and changing the valid index range for the vector.

// loop form of the code
for (i=1;i<nyrs;i++)
{
for (j=1;j<nages;j++)
{
N(i+1,j+1)=N(i,j)*S(i,j);

}
}

// can only eliminate the inside loop
for (i=1;i<nyrs;i++)
{
// ++ increments the index bounds by 1
N(i+1)(2,nyrs)=++elem_prod(N(i)(1,nage-1),S(i)(1,nage-1));

}

Notice that N(i+1) is a vector object, so N(i+1)(2,nyrs) is a subvector of N(i). Another
point is that elem_prod(N(i)(1,nage-1),S(i)(1,nage-1)) is a vector object with mini-
mum valid index 1 and maximum valid index nyrs-1. The operator ++ applied to a subvector
increments the valid index range by 1, so that it has the same range of valid index values as
N(i+1)(2,nyrs). The operator --@-- would decrement the valid index range by 1.

1.27 The use of higher-dimensional arrays

The example contained in the file FOURD.TPL illustrates some aspects of the use of 3 and
4-dimensional arrays. There are now examples of the use of arrays up to dimension 7 in the
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documentation. 2

DATA_SECTION
init_4darray d4(1,2,1,2,1,3,1,3)
init_3darray d3(1,2,1,3,1,3)

PARAMETER_SECTION
init_matrix M(1,3,1,3)
4darray p4(1,2,1,2,1,3,2,3)
objective_function_value f

PRELIMINARY_CALCS_SECTION
for (int i=1;i<=3;i++)
{
M(i,i)=1; // set M equal to the identity matrix to start

}
PROCEDURE_SECTION
for (int i=1;i<=2;i++)
{
for (int j=1;j<=2;j++)
{
// d4(i,j) is a 3x3 matrix -- d3(i) is a 3x3 matrix
// d4(i,j)*M is matrix multiplication -- inv(M) is matrix inverse
f+= norm2( d4(i,j)*M + d3(i)+ inv(M) );

}
}
REPORT_SECTION
report << "Printout of a 4 dimensional array" << endl << endl;
report << d4 << endl << endl;
report << "Printout of a 3 dimensional array" << endl << endl;
report << d3 << endl << endl;

In the DATA_SECTION, you can use 3darrays, 4darrays,. . . , 7darrays, and init_3darrays,
init_4darrays,. . . , init_7darrays. In the PARAMETER_SECTION, you can use 3darrays,
4darrays,. . . , 7darrays, and init_3darrays, init_4darrays,. . . , init_5darrays, at the
time of writing.

If d4 is a 4darray, then d4(i) is a 3-dimensional array and d4(i,j) is a matrix object,
so d4(i,j)*M is matrix multiplication. Similarly, if d3 is a 3darray, then d3(i) is a matrix
object, so d4(i,j)*M + d3(i) + inv(M) combines matrix multiplication, matrix inversion,
and matrix addition.

2See Chapter 4 for an example of the use of higher-dimensional arrays.
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1.28 The TOP_OF_MAIN section

The TOP_OF_MAIN section is intended to allow the programmer to insert any desired C++

code at the top of the main() function in the program. The code is copied literally from
the template to the program. This section can be used to set the autodif global variables.
(See the autodif user’s manual chapter on autodif global variables.) The following code
fragment will set these variables:

TOP_OF_MAIN_SECTION
arrmblsize = 200000; // use instead of

// gradient_structure::set_ARRAY_MEMBLOCK_SIZE
gradient_structure::set_GRADSTACK_BUFFER_SIZE(100000); // this may be

// incorrect in the AUTODIF manual.
gradient_structure::set_CMPDIF_BUFFER_SIZE(50000);
gradient_structure::set_MAX_NVAR_OFFSET(500); // can have up to 500

// independent variables
gradient_structure::set_MAX_NUM_DEPENDENT_VARIABLES(500); // can have

// up to 500 dependent variables

Note that within AD Model Builder, one doesn’t use the function

gradient_structure::set_ARRAY_MEMBLOCK_SIZE

to set the amount of memory available for variable arrays. Instead, use the line of code

arrmblsize = nnn;

where nnn is the amount of memory desired.

1.29 The GLOBALS_SECTION

The GLOBALS_SECTION is intended to allow the programmer to insert any desired C++ code
before the main() function in the program. The code is copied literally from the template to
the program. This enables the programmer to define global objects, and to include include
header files and user-defined functions into the generated C++ code.

1.30 The BETWEEN_PHASES_SECTION

Code in BETWEEN_PHASES_SECTION is executed before each phase of the minimization. It
is possible to carry out different actions that depend on what phase of the minimization is
to begin, by using a switch statement (you can read about this in a book on C or C++),
together with the current_phase() function.
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switch (current_phase())
{
case 1:
// some action
cout << "Before phase 1 minimization " << endl;
break;

case 2: i
// some action
cout << "Before phase 2 minimization " << endl;
break;

// ....
}
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Chapter 2

Markov Chain Simulation

2.1 Introduction to the Markov Chain Monte Carlo
Approach in Bayesian Analysis

The reference for this chapter is [3], Chapter 11).
The Markov chain Monte Carlo method (mcmc) is a method for approximating the

posterior distribution for parameters of interest in the Bayesian framework. This option is
invoked by using the command line option -mcmc N, where N is the number of simulations
performed. You will probably also want to include the option -mcscale, which dynamically
scales the covariance matrix until a reasonable acceptance rate is observed. You may also
want to use the -mcmult n option, which scales the initial covariances matrix if the initial
values are so large that arithmetic errors occur. One advantage of AD Model Builder over
some other implementations of mcmc is that the mode of the posterior distribution, together
with the Hessian at the mode, is available to use for the mcmc routine. This information is
used to implement a version of the Hastings-Metropolis algorithm. Another advantage is that
with AD Model Builder, it is possible to calculate the profile likelihood for a parameter of
interest and compare the distribution to the mcmc distribution for that parameter. A large
discrepancy may indicate that one or both estimates are inadequate. If you wish to do more
simulations (and to carry on from where the last one ended), use the -mcr option. Figure 2.1
compares the profile likelihood for the projected biomass to the estimates produced by the
mcmc method, for different sample sizes (25,000 and 2,500,000 samples) for the catage
example.

A report containing the observed distributions is produced in the file root.hst. All
objects of type sdreport, i.e., number, vector, or matrix, are included. It is possible
to save the results of every nth simulation by using the -mcsave n option. Afterwords,
these values can be used by running the model with the -mceval option, which will eval-
uate the userfunction once for every saved simulation value. At this time, the function
mceval_phase() will return the value “true,” and can be used as a switch to perform desired
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Figure 2.1: Predicted biomass of (2+) fish ×103.

calculations. The results are saved in a binary file root.psv. If you want to convert this file
into ascii, see the next section. If you have a large number of variables of type sdreport,
calculating the values of them for the mcmc can appreciably slow down the calculations. To
turn off these calculations during the -mcsave phase, use the option -nosdmcmc. Note: If
you use this option and restart the mcmc calculations with the -mcr option, you must use
the -nosdmcmc as well. Otherwise, the program will try to read in the non-existent histogram
data.

AD Model Builder uses the Hessian to produce an (almost) multivariate normal distri-
bution for the Metropolis-Hastings algorithm. It is not exactly multivariate normal, because
the random vectors produced are modified to satisfy any bounds on the parameters.

There is also an option for using a fatter-tailed distribution. This distribution is a mixture
of the multivariate normal and a fat-tailed distribution. It is invoked with the -mcprobe n
option, where n is the amount of fat-tailed distribution in the mixture. Probably, a value of
n between 0.05 and 0.10 is best.

2.2 Reading AD Model Builder binary files

Often, the data that AD Model Builder needs to save are saved in the form of a binary file,
using the uistream and uostream classes. If these data consist of a series of vectors, all
of which have the same dimension, they are often saved in this form, where the dimension
is saved at the top of the file, and the vectors are saved afterwards. It may be useful to
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convert these numbers into binary form, so they can be put into other programs, such as
spreadsheets. The following code will read the contents of these binary files. You should call
the program readbin.cpp. It should be a simple matter to modify this program for other
uses.

#include <fvar.hpp>
/* program to read a binary file (using ADMB’s uistream and

uostream stream classes) of vectors of length n.
It is assumed that the size n is stored at the top of
the file. there is no information about any many vectors
are stored so we must check for an eof after each read
To use the program you type:

readbin filename
*/
void produce_comma_delimited_output(dvector& v)
{
int i1=v.indexmin();
int i2=v.indexmax();
for (int i=i1;i<=i2;i++)
{
cout << v(i) << ",";

}
cout << endl;

}

main(int argc, char * argv[])
{
if (argc < 2)
{
cerr << " Usage: progname inputfilename" << endl;
exit(1);

}
uistream uis = uistream(argv[1]);
if (!uis)
{
cerr << " Error trying to open binary input file "

<< argv[1] << endl;
exit(1);

}
int ndim;
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uis >> ndim;
if (!uis)
{
cerr << " Error trying to read dimension of the vector"

" from the top of the file "
<< argv[1] << endl;

exit(1);
}
if (ndim <=0)
{
cerr << " Read invalid dimension for the vector"

" from the top of the file "
<< argv[1] << " the number was " << ndim << endl;

exit(1);
}

int nswitch;
cout << " 1 to see all records" << endl

<< " 2 then after the prompts n1 and n2 to see all" << endl
<< " records between n1 and n2 inclusive" << endl
<< " 3 to see the dimension of the vector" << endl
<< " 4 to see how many vectors there are" << endl;

cin >> nswitch;
dvector rec(1,ndim);
int n1=0;
int n2=0;
int ii=0;
switch(nswitch)
{
case 2:
cout << " Put in the number for the first record you want to see"

<< endl;
cin >> n1;
cout << " Put in the number for the second record you want to see"

<< endl;
cin >> n2;

case 1:
do
{
uis >> rec;
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if (uis.eof()) break;
if (!uis)
{
cerr << " Error trying to read vector number " << ii

<< " from file " << argv[1] << endl;
exit(1);

}
ii++;
if (!n1)
{
// comment out the one you don’t want
//cout << rec << endl;
produce_comma_delimited_output(rec);

}
else
{
if (n1<=ii && ii<=n2)
{
// comment out the one you don’t want
//cout << rec << endl;
produce_comma_delimited_output(rec);

}
}

}
while (1);
break;

case 4:
do
{
uis >> rec;
if (uis.eof()) break;
if (!uis)
{
cerr << " Error trying to read vector number " << ii

<< " from file " << argv[1] << endl;
exit(1);

}
ii++;

}
while (1);
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cout << " There are " << ii << " vectors" << endl;
break;

case 3:
cout << " Dimension = " << ndim << endl;

default:
;

}
}

2.3 Convergence diagnostics for mcmc analysis

A major difficulty with mcmc analysis is determining whether or not the chain has converged
to the underlying distribution. In general, it is never possible to prove that this convergence
has occurred. In this section, we concentrate on methods that hopefully will detect situations
when convergence has not occurred.

The default mcmc method employed in AD Model Builder takes advantage of the fact
that AD Model Builder can find the mode of the posterior distribution and compute the
Hessian at the mode. If the posterior distribution is well approximated by a multivariate
normal centered at the mode, with covariance matrix equal to the inverse of the Hessian, this
method can be extremely efficient for many parameter problems—especially when compared
to simpler methods, such as the Gibbs sampler. The price one pays for this increased
efficiency is that the method is not as robust as is the Gibbs sampler, and for some problems,
it will perform much more poorly than does the Gibbs sampler.

As an example of this poor performance, we consider a simple three-parameter model
developed by Vivian Haist to analyze Bowhead whale data.

The data for the model consist of total catches between 1848 and 1993, together with
an estimate of the biomass in 1988, and an estimate of the change in relative biomass
between 1978 and 1988.

DATA_SECTION
init_vector cat(1848,1993)

PARAMETER_SECTION
init_bounded_number k(5000,40000,1)
init_bounded_number r(0,0.10,1)
init_bounded_number p(0.5,1,2)
number delta;
vector bio(1848,1994);
likeprof_number fink
!! fink.set_stepsize(.003);
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!! fink.set_stepnumber(20);
sdreport_number finr
sdreport_number finp
objective_function_value f

PROCEDURE_SECTION
if (initial_params::mc_phase)
{
cout << k << endl;
cout << r << endl;
cout << p << endl;

}
bio(1848)=k*p;

for (int iy=1848; iy<=1993; iy++)
{

dvariable fpen1=0.0;
bio(iy+1)=posfun(bio(iy)+r*bio(iy)*(1.-(bio(iy)/k)),100.0,fpen1);
dvariable sr=1.- cat(iy)/bio(iy);
dvariable kcat=cat(iy);
f+=1000*fpen1;
if(sr< 0.05)
{
dvariable fpen=0.;
kcat=bio(iy)*posfun(sr,0.05,fpen);
f+=10000*fpen;

// cout << " kludge "<<iy <<" "<<kcat<<" "<<cat(iy)<<" "<<fpen<<endl;
}
bio(iy+1)-=kcat;

}
finr=r;
fink=k;
finp=p;
delta=(bio(1988)-bio(1978))/bio(1978);
f+=log(sqrt(2.*PI)*500)+square(bio(1988)-7635.)/(2.*square(500));
f+=log(sqrt(2.*PI)*.03)+square(delta-0.15)/(2.*square(.03));

This is a biomass dynamic model, where the biomass is assumed to satisfy the difference
equation

Bi+1 = Bi + r ∗Bi(1−Bi/k)− Ci (2.1)

For this formulation, there is no guarantee that the biomass will remain positive, so the
posfun function has been used in the program to ensure that this condition will hold. This
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is a very “data-poor” design.
The model was fit to the data and the standard mcmc analysis was performed for it.

The results were compared to an mcmc analysis performed with the Gibbs sampler. It was
found that the Gibbs sampler performed better.

It is not difficult to determine why the mcmc performed so poorly. The estimated covari-
ance matrix for the parameters is shown below. To four significant figures, the correlation
between r and k is −1.0000. Thus, the Hessian matrix is almost singular.

index name value std.dev 1 2 3
1 k 1.0404e+04 8.8390e+05 1.0000
2 r 4.8838e-02 9.0337e+00 -1.0000 1.0000
3 p 5.7293e-01 3.6946e+00 0.9998 -0.9998 1.0000

If the posterior distribution were exactly normally distributed, then the Hessian would be
constant, i.e., not depend on the point at which is is calculated, and its use would produce
the most efficient mcmc procedure. However, in nonlinear models, the posterior distribution
is not normally distributed, so the Hessian changes as we move away from the mode. Using
an almost singular Hessian can make things perform very badly, as in the present case.

To deal with almost singular Hessians, we have added the -mcrb N option. This option
reduces the amount of correlation in the Hessian, while leaving the standard deviations fixed.
The number N should be between 1 and 9. The smaller the number, the more the correlation
is reduced. For this example (see Figure 2.2), a value of 3 seemed to perform well.
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Figure 2.2
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Chapter 3

A Forestry Model: Estimating the
Size Distribution of Wildfires

3.1 Model description
This examples highlights two features of AD Model Builder: 1) the use of a numerical
integration routine within a statistical parameter estimation model, and 2) the use of the
ad_begin_funnel mechanism to reduce the size of temporary file storage required. It also
provides a performance comparison between AD Model Builder and Splus.

This problem investigates a model that predicts a relationship between the size and
frequency of wildfires. It is assumed that the probability of observing a wildfire in size
category i is given by Pi, where

log(Pi) = ln (Si − Si+1)− ln
(
S(1)

)
.

If fi is the number of wildfires observed to lie in size category i, the log-likelihood function
for the problem is given by

l(τ, ν, β, σ) =
∑
i

fi

[
ln
(
Si − Si+1

)
− ln

(
S(1)

)]
(3.1)

where Si is defined by the integral

Si =

∫ ∞
−∞

exp
{
− z2/2 + τ

(
− 1 + exp

(
− νaβi exp(σz)

))}
dz (3.2)

The parameters τ , ν, β, and σ are functions of the parameters of the original model,
and don’t have a simple interpretation. Fitting the model to data involves maximizing the
above log-likelihood (3.1). While the gradient can be calculated (in integral form), coding it
is cumbersome. Numerically maximizing the log-likelihood without specifying the gradient
is preferable.
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The parameter β is related to the fractal dimension of the perimeter of the fire. One
hypothesis of interest is that β = 2/3, which is related to hypotheses about the nature of
the mechanism by which fires spread. The AD Model Builder code for the model follows.

DATA_SECTION
int time0
init_int nsteps
init_int k
init_vector a(1,k+1)
init_vector freq(1,k)
int a_index;
number sum_freq
!! sum_freq=sum(freq);
PARAMETER_SECTION
init_number log_tau
init_number log_nu
init_number log_beta(2)
init_number log_sigma
sdreport_number tau
sdreport_number nu
sdreport_number sigma
sdreport_number beta
vector S(1,k+1)
objective_function_value f

INITIALIZATION_SECTION
log_tau 0
log_beta -.405465
log_nu 0
log_sigma -2

PROCEDURE_SECTION
tau=exp(log_tau);
nu=exp(log_nu);
sigma=exp(log_sigma);
beta=exp(log_beta);
funnel_dvariable Integral;
int i;
for (i=1;i<=k+1;i++)
{
a_index=i;
ad_begin_funnel();
Integral=adromb(&model_parameters::h,-3.0,3.0,nsteps);
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S(i)=Integral;
}
f=0.0;
for (i=1;i<=k;i++)
{
dvariable ff=0.0;
// make the model stable for case when S(i)<=S(i+1)
// we have to subtract s(i+1) from S(i) first or roundoff will
// do away with the 1.e-50.
f-=freq(i)*log(1.e-50+(S(i)-S(i+1)));
f+=ff;

}
f+=sum_freq*log(1.e-50+S(1));

FUNCTION dvariable h(const dvariable& z)
dvariable tmp;
tmp=exp(-.5*z*z + tau*(-1.+exp(-nu*pow(a(a_index),beta)*exp(sigma*z))) );
return tmp;

REPORT_SECTION
int * pt=NULL;
report << " elapsed time = " << time(pt)-time0 << " seconds" << endl;
report << "nsteps = " << setprecision(10) << nsteps << endl;
report << "f = " << setprecision(10) << f << endl;
report << "a" << endl << a << endl;
report << "freq" << endl << freq << endl;
report << "S" << endl << S << endl;
report << "S/S(1)" << endl << setfixed << setprecision(6) << S/S(1) << endl;
report << "tau " << tau << endl;
report << "nu " << nu << endl;
report << "beta " << beta << endl;
report << "sigma " << sigma << endl;

3.2 The numerical integration routine

The statement

Integral=adromb(&model_parameters::h,-3.0,3.0,nsteps);

invokes the numerical integration routine for the user-defined function h. The function must
be defined in a FUNCTION subsection. It can have any name, must be defined to take a const
dvariable& argument, and must return a dvariable. The values −3.0 and 3.0 are the
limits of integration (effectively −∞, ∞ for this example). The integer argument nsteps
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determines how accurate the integration will be. Higher values of nsteps will be more
accurate, but greatly increase the amount of time necessary to fit the model. The basic
strategy is to use a moderate value for nsteps, such as 6, and then to increase this value to
see if the parameter estimates change much.

FUNCTION dvariable h(const dvariable& z)

3.3 Using the ad_begin_funnel routine to reduce
the amount of temporary storage required

Numerical integration routines can be very computationally intensive, especially when they
must be computed to great accuracy. Such computations will require a lot of temporary
storage in AD Model Builder. Fortunately, the output from such a routine is just one
number: the value of the integral. In automatic differentiation terminology, a long set of
computations that produce just one number is known as a “funnel.” It is possible to exploit
the properties of such a funnel to greatly reduce the amount of temporary storage required.
All that is necessary is to declare an object of type funnel_dvariable and to assign the
results of the computation to it. At the beginning of the funnel, a call to the function
ad_begin_funnel is made. There is quite a bit of overhead associated with the funnel
construction, so it should not be used for very small calculations. However, it is possible to
put it in and test the program to see whether or not it runs more quickly. The following
modified code will produce exactly the same results, but without the funnel construction:

dvariable Integral; // change the definition of Integral
int i;
for (i=1;i<=k+1;i++)
{
a_index=i;
// ad_begin_funnel(); // comment out this line
Integral=adromb(&model_parameters::h,-3.0,3.0,nsteps);
S(i)=Integral;

}

If the funnel construction is used on a portion of code that is not a funnel, incorrect derivative
values will be obtained. If this is suspected, the funnel should be removed, as in the above
example, and the model run again.
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3.4 Effect of the accuracy switch on the
running time for numerical integration

The following report shows the amount of time required to run the model with a fixed value
of β for different values of the parameter nsteps. For practical purposes, a value of nsteps=8
gives enough accuracy so that the model could be fit in about 6 seconds.

elapsed time = 2 seconds nsteps = 6 f = 629.9846518
tau 9.851110 nu 8.913479 beta 0.666667 sigma 1.885570

elapsed time = 2 seconds nsteps = 7 f = 629.9851092
tau 9.850213 nu 8.835066 beta 0.666667 sigma 1.882967

elapsed time = 6 seconds nsteps = 8 f = 629.9851223
tau 9.850227 nu 8.836769 beta 0.666667 sigma 1.883024

elapsed time = 6 seconds nsteps = 9 f = 629.9851222
tau 9.850226 nu 8.836769 beta 0.666667 sigma 1.883024

elapsed time = 14 seconds nsteps = 10 f = 629.9851222
tau 9.850226 nu 8.836769 beta 0.666667 sigma 1.883024

The corresponding times when beta was estimated in an extra phase of the minimization
are given here. It as apparent that the model parameters become unstable when beta is
being estimated. Twice the log-likelihood difference is 2(629.98 − 627.31) = 5.34 which is
significant.

elapsed time = 3 seconds nsteps = 6 f = 627.2919906
tau 20.729183 nu 427.816375 beta 0.180225 sigma 2.499445

elapsed time = 6 seconds nsteps = 7 f = 627.2952716
tau 21.868971 nu 80914.970724 beta 0.170392 sigma 4.232237

elapsed time = 17 seconds nsteps = 8 f = 627.297021
tau 22.858629 nu 2326271883.421848 beta 0.164749 sigma 7.653068

elapsed time = 62 seconds nsteps = 9 f = 627.2993787
tau 23.771061 nu 1652877622661391616.000000 beta 0.161073 sigma 14.451510

elapsed time = 123 seconds nsteps = 10 f = 627.3106333
tau 23.116097 nu 49753858778.636856 beta 0.159364 sigma 8.663666
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elapsed time = 244 seconds nsteps = 11 f = 627.310624
tau 23.115275 nu 49009470510.133156 beta 0.159369 sigma 8.658643

3.5 A comparison with Splus for the forestry model
The Splus minimizing routine nlminb was used to fit the model. Fitting the three-parameter
model with Splus required approximately 280 seconds, compared to 6 seconds with ADModel
Builder, so that ADModel Builder was approximately 45 times faster for this simple problem.

For the four parameter problem with beta estimated, the SPLUS routine exited after
14 minutes and 30 seconds, reporting false convergence with a function value of 627.338.

The data for the example is

a
0.04 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8 25.6 51.2 102.4 204.8
freq
167 84 61 29 19 17 4 4 1 0 1 1

where the first line contains the bounds for the size categories and the second line contains
the number of observations in each size category. The Splus code with fixed beta for the
example is

obj.20<-
function(xvec)
{
#Objective for maxn in NLMINB NB vector argument
- llik.20(xvec[1], xvec[2], xvec[3])
}
llik.20<-
function(logtau, lognu, logsigma)
{

tau<-exp(logtau)
nu<-exp(lognu)
sigma<-exp(logsigma)
print(tau)
print(nu)
print(sigma)
llik <- 0
for(i in 1:(length(freq)+1)) {

Int[i]<-S.20(xa[i], tau, nu, sigma)
}
print(llik)
for(i in 1:length(freq)) {
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llik <- llik + (freq[i] * (log(1.e-50+(Int[i]-Int[i+1]))
-log(1.e-50+Int[1])))

}
llik

}
S.20<-
function(da, tau, nu, sigma)
{

results <- integrate(intgnd.20, -3, 3, TAU = tau, NU = nu, SIGMA =
sigma, A = da)

if(results\$message != "normal termination")
ans <- results\$message

else ans <- results\$integral
ans

}
intgnd.20<-
function(z, A, TAU, NU, SIGMA)
{
exp(-0.5 * z^2 + TAU * (-1 + exp(-NU * A^2/3 * exp(SIGMA * z))))

}

To run the example in Splus with the same initial values, use the following values

logtau 0 lognu 0 logsigma -2

The vector a should contain the 13 a values, while the vector freq should contain the 12
observed frequencies.
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Chapter 4

Economic Models: Regime Switching

An active field in macroeconomic modeling is the area of “regime switching.” This is discussed
in greater generality in [5], Chapter 22. The code for the following example is based on the
domain switching model taken from [4]. This example is not ideal for exploiting AD Model
Builder’s greatest advantage, which is the ability to estimate parameters in models with a
large number of independent variables. However, it does illustrate the efficacy of the use of
higher (up to 7-dimensional) arrays in AD Model Builder.

4.1 Analysis of economic data from [4]

For this model, the observed quantities are the Yt, where

Yt = a0 + a1sti + Zt (4.1)

and the state variables Zt satisfy the fourth-order autoregressive relationship

Zt = f1Zt−1 + f2Zt−2 + f3Zt−3 + f4Zt−4 + εt (4.2)

where, in turn, the εt are independent, normally distributed random variables, with mean 0
and standard deviation σ. These equations correspond to Hamilton’s [4] equations 4.3. The
state variable sti is the realized value of a Markov process, St, whose evolution is described
below. This coefficient takes on the value i when the system is in state i. In the current
example, there are two states, so st takes on one of the two values 0 or 1. We can solve
equation (4.1) for the values of Zt conditioned on the unknown value of the state at time t.
Let zti be defined by

zi0 = Yt − a0
zt1 = Yt − a0 − a1
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Let (i, j, k, l,m) be a quintuplet of state values for the states at time t, t − 1, . . . , t − 4.
Define e(t, i, j, k, l,m), the realized values of the random variables εt, by

e(t, i, j, k, l,m) = Yti − f1zt−1,j − f2zt−2,k − f3zt−3,l − f4zt−4,m

Notice that due to the lags, we can only begin to calculate values for the e(t, i, j, k, l,m)
in time period 5. It is assumed that the state transitions are given by a Markov process with
transition matrix P = (pij).1 If we are in state j at time t, the probability of being in state i
at time t+ 1 is pij.

If we consider the quintuple of the last 5 states to be the states of a new Markov process,
then we can define the transition matrix for this process by

(i, j, k, l,m)⇒ (0, i, j, k, l) with probability p0i

and
(i, j, k, l,m)⇒ (1, i, j, k, l) with probability p1i

If q(t − 1, j, k, l,m, n) is the probability of being in state (j, k, l,m, n) at period t − 1, the
probability of being in state q(t, i, j, k, l,m) at time period t is given by

q(t, i, j, l, ,m) =
∑
n

Pijq(t− 1, j, k, l,m, n)

In particular, if
qb(t, i, j, k, l,m)

is the probability of being in the state (i, j, l,m, n) before observing Yt, and qa(t− 1, j, k, l,m, n)
is the probability of being in the state (j, k, l,m, n) after observing Yt−1, then

qb(t, i, j, k, l,m) =
∑
n

Pijqa(t− 1j, k, l,m, n) (4.3)

Let Q(Yt|(i, j, k, l,m), Yt−1, Yt−2, Yt−3, Yt−4) be the conditional probability (or probability
density) for Yt given St = i, St−1 = j, St−2 = k, St−3 = l, St−4 = m,Yt−1, Yt−2, Yt−3, Yt−4.
Then, ignoring a constant term that is irrelevant for the calculations,

Q(Yt|(i, j, k, l,m), Yt−1, Yt−2, Yt−3, Yt−4) = exp
(
− e(i, j, k, l,m)2/2σ2

)
/σ (4.4)

Define u(Yt, i, j, k, l,m) by

u(Yt, i, j, k, l,m) = Q(Yt|(i, j, k, l,m), Yt−1, . . . , Yt−4)qb(t, i, j, k, l,m) (4.5)

1Hamilton seems to index his matrices with the column index first in some cases. We use the row index
first. Thus, Hamilton’s pij may correspond to our pji.
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Then, qa(t, it, j, k, l,m) can be calculated from the relationship

qa(t, it, j, k, l,m) = u(Yt, i, j, k, l,m)

/∑
i,j,k,l,m

u(Yt, i, j, k, l,m) (4.6)

The log-likelihood function for the parameters can be calculated from the u(Yt, i, j, k, l,m).
It is equal to ∑

t

log

( ∑
i,j,k,l,m

u(Yt, i, j, k, l,m)

)
(4.7)

4.2 The code for Hamilton’s fourth-order
autoregressive model

The complete AD Model Builder template (tpl) code is in the file ham4.tpl. The C++

(cpp) code produced from this is in the file ham4.cpp. Here is the tpl code, split up with
comments:

DATA_SECTION
init_number a1init // read in the initial value of a1 with the data
init_int nperiods1 // the number of observations
int nperiods // nperiods-1 after differencing
!! nperiods=nperiods1-1;
init_vector yraw(1,nperiods1) //read in the observations
vector y(1,nperiods) // the differenced observations
!! y=100.*(--log(yraw(2,nperiods1)) - log(yraw(1,nperiods)));
int order
int op1
!! order=4; //order of the autoregressive process
!! op1=order+1;
int nstates // the number of states (expansion and contraction)
!! nstates=2;

The DATA_SECTION contains constant quantities, or “data.” This is in contrast to quantities
that depend on parameters being estimated, which go into the PARAMETER_SECTION. All
quantities in the PARAMETER_SECTION with the init_ prefix are initial data, which must be
read in from somewhere. By default, they are read in from the file ROOT.dat (dat file),
where “ROOT” is the root part of the name of the program being run (in this case, ham4.exe,
so it is ham4.dat).

The first quantity is a number, a1init, which will be used for initializing the value of a1
in the program. This is a simple way to try different initial values for a1 simply by modifying
the input data file. Such procedures are often valuable, to ensure that the correct global
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value of the objective function has been found. The second quantity, nperiods1, is the
number of data points in the file. Notice that as soon as a quantity has been defined, it is
available to use for defining other quantities. The quantity nperiod does not have an init_
before it, so it will not be read in and must be calculated in terms of other quantities at
some point. Since we want it now, it is calculated immediately.

!! nperiods=nperiods1-1;

The !! are used to insert any valid C++ code into the DATA_SECTION or PARAMETER_SECTION.
This code will be executed verbatim (after the !! have been stripped off, of course) at the
appropriate time. The init_vector yraw is defined and given a size, with indices going
from 1 to nperiods1. The nperiods1 data points will be read into yraw from the dat
file. The data are immediately transformed and the resulting nperiods data points are put
into y.

PARAMETER_SECTION
init_vector f(1,order,1) // coefficients for the autoregressive

// process
init_bounded_matrix Pcoff(0,nstates-1,0,nstates-1,.01,.99,2)

// determines the transition matrix for the markov process
init_number a0(5) // equation 4.3 in Hamilton (1989)
init_bounded_number a1(0.0,10.0,4);
!! if (a0==0.0) a1=a1init; // set initial value for a1 as specified

// in the top of the file nham4.dat
init_bounded_number smult(0.01,1,3) // used in computing sigma
matrix z(1,nperiods,0,1) // computed via equation 4.3 in

// Hamilton (1989)
matrix qbefore(op1,nperiods,0,1); // prob. of being in state before
matrix qafter(op1,nperiods,0,1); // and after observing y(t)
number sigma // variance of epsilon(t) in equation 4.3
number var // square of sigma
sdreport_matrix P(0,nstates-1,0,nstates-1);
number ff1;
vector qb1(0,1);
matrix qb2(0,1,0,1);
3darray qb3(0,1,0,1,0,1);
4darray qb4(0,1,0,1,0,1,0,1);
6darray qb(op1,nperiods,0,1,0,1,0,1,0,1,0,1);
6darray qa(op1,nperiods,0,1,0,1,0,1,0,1,0,1);
6darray eps(op1,nperiods,0,1,0,1,0,1,0,1,0,1);
6darray eps2(op1,nperiods,0,1,0,1,0,1,0,1,0,1);
6darray prob(op1,nperiods,0,1,0,1,0,1,0,1,0,1);
objective_function_value ff;
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The PARAMETER_SECTION describes the parameters of the model, that is, the quantities to be
estimated. Quantities that have the prefix init_ are akin to the independent variables from
which the log-likelihood function (or, more generally, any objective function) can be calcu-
lated. Other objects are dependent variables that must be calculated from the independent
variables. The default behavior of AD Model Builder is to read in initial parameter values for
the parameters from a PAR file, if it finds one. Otherwise, they are given default values con-
sistent with their type. The quantity f is a vector of four coefficients for the autoregressive
process. Pcoff is a 2×2 matrix used to parameterize the transition matrix P for the Markov
process. Its values are restricted to lie between 0.01 and 0.99. smult is a number used to
parameterize sigma and var (which is the variance) as a multiple of the mean-squared resid-
uals. This reparameterization undimensionalizes the calculation and is a good technique to
employ for nonlinear modeling in general. The transition matrix P is defined to be of type
sdreport_matrix, so the standard deviation estimates for its members will be included in
the standard deviation report contained in the std file. To date, AD Model Builder sports
up to 7-dimensional arrays. For historical reasons, 1 and 2-dimensional arrays are referred
to as vector and matrix. This becomes a bit difficult for higher-dimensional arrays, so they
are simply referred to as 3darray, 4darray,. . ., 7darray.

PROCEDURE_SECTION
P=Pcoff;
dvar_vector ssum=colsum(P); // form a vector whose elements are the

// sums of the columns of P
ff+=norm2(log(ssum)); // this is a penalty so that the hessian will

// not be singular and the coefficients of P
// will be well defined

// normalize the transition matrix P so its columns sum to 1
int j;
for (j=0;j<=nstates-1;j++)
{
for (int i=0;i<=nstates-1;i++)
{
P(i,j)/=ssum(j);

}
}

// get z into a useful format
dvar_matrix ztrans(0,1,1,nperiods);
ztrans(0)=y-a0;
ztrans(1)=y-a0-a1;
z=trans(ztrans);
int t,i,k,l,m,n;
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qb1(0)=(1.0-P(1,1))/(2.0-P(0,0)-P(1,1)); // unconditional distribution
qb1(1)=1.0-qb1(0);

// for periods 2 through 4 there are no observations to condition
// the state distributions on so we use the unconditional distributions
// obtained by multiplying by the transition matrix P.
for (i=0;i<=1;i++) {
for (j=0;j<=1;j++) qb2(i,j)=P(i,j)*qb1(j);

}

for (i=0;i<=1;i++) {
for (j=0;j<=1;j++) {
for (k=0;k<=1;k++) qb3(i,j,k)=P(i,j)*qb2(j,k);

}
}

for (i=0;i<=1;i++) {
for (j=0;j<=1;j++) {
for (k=0;k<=1;k++) {
for (l=0;l<=1;l++) qb4(i,j,k,l)=P(i,j)*qb3(j,k,l);

}
}

}

// qb(5) is the probability of being in one of 32
// states (32=2x2x2x2x2) in periods 5,4,3,2,1 before observing
// y(5)
for (i=0;i<=1;i++) {
for (j=0;j<=1;j++) {
for (k=0;k<=1;k++) {
for (l=0;l<=1;l++) {
for (m=0;m<=1;m++) qb(op1,i,j,k,l,m)=P(i,j)*qb4(j,k,l,m);

}
}

}
}
// now calculate the realized values for epsilon for all
// possible combinations of states
for (t=op1;t<=nperiods;t++) {
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for (i=0;i<=1;i++) {
for (j=0;j<=1;j++) {
for (k=0;k<=1;k++) {
for (l=0;l<=1;l++) {
for (m=0;m<=1;m++) {
eps(t,i,j,k,l,m)=z(t,i)-phi(z(t-1,j),
z(t-2,k),z(t-3,l),z(t-4,m),f);

eps2(t,i,j,k,l,m)=square(eps(t,i,j,k,l,m));
}

}
}

}
}

}
// calculate the mean squared "residuals" for use in
// "undimensionalized" parameterization of sigma
dvariable eps2sum=sum(eps2);
var=smult*eps2sum/(32.0*(nperiods-4));
sigma=sqrt(var);

for (t=op1;t<=nperiods;t++) {
for (i=0;i<=1;i++) {
for (j=0;j<=1;j++) {
for (k=0;k<=1;k++)
prob(t,i,j,k)=exp(eps2(t,i,j,k)/(-2.*var))/sigma;

}
}

}

for (i=0;i<=1;i++) {
for (j=0;j<=1;j++) {
for (k=0;k<=1;k++) {
for (l=0;l<=1;l++) {
for (m=0;m<=1;m++) qa(op1,i,j,k,l,m)= qb(op1,i,j,k,l,m)*
prob(op1,i,j,k,l,m);

}
}

}
}
ff1=0.0;
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qbefore(op1,0)=sum(qb(op1,0));
qbefore(op1,1)=sum(qb(op1,1));
qafter(op1,0)=sum(qa(op1,0));
qafter(op1,1)=sum(qa(op1,1));
dvariable sumqa=sum(qafter(op1));
qa(op1)/=sumqa;
qafter(op1,0)/=sumqa;
qafter(op1,1)/=sumqa;
ff1-=log(1.e-50+sumqa);
for (t=op1+1;t<=nperiods;t++) { // notice that the t loop includes 2
for (i=0;i<=1;i++) { // i,j,k,l,m blocks
for (j=0;j<=1;j++) {
for (k=0;k<=1;k++) {
for (l=0;l<=1;l++) {
for (m=0;m<=1;m++) {
qb(t,i,j,k,l,m).initialize();
// here is where having 6 dimensional arrays makes the
// formula for moving the state distributions form period
// t-1 to period t easy to program and understand.
// Throw away n and accumulate its two values into next
// time period after multiplying by transition matrix P
for (n=0;n<=1;n++) qb(t,i,j,k,l,m)+=P(i,j)*qa(t-1,j,k,l,m,n);

}
}

}
}

}
for (i=0;i<=1;i++) {
for (j=0;j<=1;j++) {
for (k=0;k<=1;k++) {
for (l=0;l<=1;l++) {
for (m=0;m<=1;m++) qa(t,i,j,k,l,m)=qb(t,i,j,k,l,m)*

prob(t,i,j,k,l,m);
}

}
}

}
qbefore(t,0)=sum(qb(t,0));
qbefore(t,1)=sum(qb(t,1));
qafter(t,0)=sum(qa(t,0));
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qafter(t,1)=sum(qa(t,1));
dvariable sumqa=sum(qafter(t));
qa(t)/=sumqa;
qafter(t,0)/=sumqa;
qafter(t,1)/=sumqa;
ff1-=log(1.e-50+sumqa); // add small constant to avoid log(0)

}
ff+=ff1; //ff1 is minus the log-likelihood
ff+=.1*norm2(f); // add small penalty to stabilize estimation

The PROCEDURE_SECTION is where the calculations of the objective function are carried out.
First, the transition matrix P is calculated from the Pcoff. The function colsum forms a
vector whose elements are the column sums of the matrix. This is used to normalize P so
that its columns sum to 1. A penalty is added to the objective function for the column
sums, so the Hessian matrix with respect to the independent variables will not be singular.
This does not affect the “statistical” properties of the parameters of interest. The matrix z
is calculated using a transformed matrix, because AD Model Builder deals with vector rows
better than columns. The probability distribution for the states in period 1, qb1, is set equal
to the unconditional distribution for a Markov process in terms of its transition matrix P, as
discussed in [5]. The transition matrix is used to compute the probability distribution of the
states in periods (2, 1), (3, 2, 1), (4, 3, 2, 1), and finally, (5, 4, 3, 2, 1). For the last quintuplet,
this is the probability distribution before observing y(5). The quantities eps in the code
correspond to the possible realized values of the random variable ε. The quantities qa and
qb correspond to qa and qb in the documentation. The sum function is defined for arrays of
any dimension and simply forms the sum of all the components. In AD Model Builder, if xx
is an n-dimensional array, then x(i) is an (n− 1)-dimensional array. So, the statement

qbefore(t,0)=sum(qb(t,0));

takes the sum of the probabilities for the 16 quintuples of states, at time period t through t-4,
for which the state at time period t is 0. These are used in the REPORT_SECTION, to write out
a report of the estimated state probabilities at time period t, before and after observing y(t).

REPORT_SECTION
dvar_matrix out(1,2,op1,nperiods);
dvar_matrix out1(1,1,op1,nperiods);
out(1)=trans(qbefore)(1);
out(2)=trans(qafter)(1);
{
ofstream ofs("qbefore.rep");
out1(1)=trans(qbefore)(0);
ofs << trans(out1)<< endl;

}
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{
ofstream ofs("qafter.rep");
out1(1)=trans(qafter)(0);
ofs << trans(out1) << endl;

}
report << "#qbefore qafter" << endl;
report << setfixed << setprecision(3) << setw(7) << trans(out) << endl;

The REPORT_SECTION is used to report any result in a manner not already carried out by the
model’s default behavior. The probabilities of being in state 0 before and after observing
y(t) are printed into the files qbefore.rep and qafter.rep. These vectors were stored in
files, so they could be easily imported into graphing programs. The results are very similar
to Figure 1 in [4], as one might hope.

RUNTIME_SECTION
maximum_function_evaluations 20000
convergence_criteria 1.e-6

The maximum_function_evaluations 20000 will simply let the program run a long time
by setting the maximum number of function evaluations in the function minimizer equal to
20,000. (Nowhere near this many are actually needed.) The statement

convergence_criteria 1.e-6

was needed, because the default value of 1.e-4 caused the program to exit from the mini-
mization before convergence had been achieved.

TOP_OF_MAIN_SECTION
arrmblsize=500000;
gradient_structure::set_GRADSTACK_BUFFER_SIZE(200000);
gradient_structure::set_CMPDIF_BUFFER_SIZE(2100000);

The TOP_OF_MAIN_SECTION is for including code that will be included at the top of the
main() function in the C++ program. Any desired legal code may be included. There are
a number of common statements that are used to control aspects of AD Model Builder’s
performance. The statement

arrmblsize=500000;

reserves 500,000 bytes of memory for variable objects. If it is not large enough, a message
will be printed out at run time. See the index for references to more discussions of this
matter. The statements

gradient_structure::set_GRADSTACK_BUFFER_SIZE(200000);

and

gradient_structure::set_CMPDIF_BUFFER_SIZE(2100000);
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set the amount of memory that AD Model Builder reserves for variable objects. Setting
these is a matter of tuning for optimum performance. If you have a lot of memory available,
making them larger may improve performance. However, models will run without including
these statements, as long as there is enough memory for AD Model Builder’s temporary files.

GLOBALS_SECTION
#include <admodel.h>

dvariable phi(const dvariable& a1,const dvariable& a2,const dvariable& a3,
const dvariable& a4,const dvar_vector& f)

{
return a1*f(1)+a2*f(2)+a3*f(3)+a4*f(4);

}

The GLOBALS_SECTION is used to include statements at the top of the file containing the
cpp program. This is generally where global declarations are made in C++, hence its name.
However, it may be used for any legal statements, such as including header files for the
user’s data structures, etc. In this case, it has been used to define the function phi, which
is used to simplify the code for the model’s calculations. The header file admodel.hpp is
included, to define the autodif structures used in the definition of the function. This
header is automatically included near the top of the file, but this would be too late, as
GLOBALS_SECTION material is included first.

4.3 Results of the analysis

The parameter estimates for the initial parameters are written into a file HAM4.PAR. This is
an ascii file, which can be easily read. (The results are also stored in a binary file HAM4.BAR,
which can be used to restart the model with more accurate parameters estimates.)

# Objective function value = 60.8934
# f:
0.0139989 -0.0569580 -0.246292 -0.212250
# Pcoff:
0.754133 0.0955834
0.245118 0.900333
# a0:
-0.357964
# a1:
1.52138
# smult:
0.281342
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The estimates are almost identical to those reported in [4]2 The first line reports the value
of the log-likelihood function. This value can be used in hypothesis (likelihood-ratio) tests.
The file ham5.para for the fifth-order autoregressive model fit to the data in [4] is shown
below. There is one more parameter in this model. Twice the difference in the log-likelihood
functions is 2(60.89 − 59.60) = 2.58. For one extra parameter, the 95% significance level is
3.84, so the improvement in fit is not significant.

# Objective function value = 59.6039
# f:
-0.0474771 -0.113829 -0.241966 -0.225535 -0.192585
# Pcoff:
0.779245 0.0951739
0.219775 0.900719
# a0:
-0.271318
# a1:
1.46301
# smult:
0.259541

The plot of qa and qb demonstrates the extra information about the probability dis-
tribution of the current state contained in in the current value of y(t). (See Figure 4.1.)

4.4 Extending Hamilton’s model to a
fifth-order autoregressive process

Hamilton [4], page 372, remarks that investigating higher-order autoregressive processes
might be a fruitful area of research. The first extension of the model is a fifth-order autore-
gressive process.

Yt = a0 + a1sti + Zt (4.8)

and the state variables Zt satisfy the fourth-order autoregressive relationship

Zt = f1Zt−1 + f2Zt−2 + f3Zt−3 + f4Zt−4 + f5Zt−5 + εt (4.9)

which extend equations (4.1) and (4.2). The tpl file ham5.tpl for the fifth-order autoregres-
sive model is reproduced here. By employing higher-dimensional arrays, the conversion of
the tpl file from a fourth-order autoregressive process to a fifth-order one is largely formal.

2Our method for parameterizing the initial state probability distribution qb1 is slightly different from
Hamilton’s, which would explain the small discrepancy.
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The standard deviation and correlation report for the model are in the file ham4.cor,
reproduced below:

index name value std.dev 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 f 1.39e-02 1.20e-01 1.00
2 f -5.69e-02 1.37e-01 0.33 1.00
3 f -2.46e-01 1.06e-01 0.33 0.29 1.00
4 f -2.12e-01 1.10e-01 0.43 0.26 0.17 1.00
5 Pcoff 7.54e-01 5.39e-01 0.00 0.04 0.01 0.00 1.00
6 Pcoff 9.55e-02 7.58e-02 0.04 0.05 0.02 0.03 -0.04 1.00
7 Pcoff 2.45e-01 1.97e-01 -0.01 -0.11 -0.03 -0.01 0.77 0.04 1.00
8 Pcoff 9.00e-01 6.20e-01 -0.00 -0.00 -0.00 -0.00 0.00 0.83 -0.00 1.00
9 a0 -3.57e-01 2.65e-01 0.27 0.56 0.25 0.21 0.08 0.07 -0.23 -0.00 1.00

10 a1 1.52e+00 2.63e-01 -0.31 -0.57 -0.29 -0.25 -0.07 -0.04 0.21 0.00 -0.96 1.00
11 smult 2.81e-01 1.25e-01 0.54 0.69 0.48 0.45 0.06 0.05 -0.17 -0.00 0.82 -0.84 1.00
12 P 7.54e-01 9.65e-02 0.02 0.24 0.07 0.03 0.17 -0.08 -0.48 0.00 0.47 -0.44 0.36 1.00
13 P 9.59e-02 3.77e-02 0.09 0.10 0.04 0.06 -0.02 0.49 0.08 -0.05 0.14 -0.09 0.11 -0.16 1.00
14 P 2.45e-01 9.65e-02 -0.02 -0.24 -0.07 -0.03 -0.17 0.08 0.48 -0.00 -0.47 0.44 -0.36 -1.00 0.16 1.00
15 P 9.04e-01 3.77e-02 -0.09 -0.10 -0.04 -0.06 0.02 -0.49 -0.08 0.05 -0.14 0.09 -0.11 0.16 -1.00 -0.16 1.00

Figure 4.1: Apriori and aposteriori probabilities of being in state 0 in period t.
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An experienced AD Model Builder user can carry out the modifications in under one hour.
Places where modifications were made are tagged with the comment //!!5.

DATA_SECTION
init_number a1init // read in the initial value of a1 with the data
init_int nperiods1 // the number of observations
int nperiods // nperiods-1 after differencing
!! nperiods=nperiods1-1;
init_vector yraw(1,nperiods1) //read in the observations
vector y(1,nperiods) // the differenced observations
!! y=100.*(--log(yraw(2,nperiods1)) - log(yraw(1,nperiods)));
int order
int op1
!! order=5; // !!5 order of the autoregressive process
!! op1=order+1;
int nstates // the number of states (expansion and contraction)
!! nstates=2;
PARAMETER_SECTION
init_vector f(1,order,1) // coefficients for the autoregressive

// process
init_bounded_matrix Pcoff(0,nstates-1,0,nstates-1,.01,.99,2)

// determines the transition matrix for the markov process
init_number a0(5) // equation 4.3 in Hamilton (1989)
init_bounded_number a1(0.0,10.0,4);
!! if (a0==0.0) a1=a1init; // set initial value for a1 as specified

// in the top of the file nham4.dat
init_bounded_number smult(0.01,1,3) // used in computing sigma
matrix z(1,nperiods,0,1) // computed via equation 4.3 in

// Hamilton (1989)
matrix qbefore(op1,nperiods,0,1); // prob. of being in state before
matrix qafter(op1,nperiods,0,1); // and after observing y(t)
number sigma // variance of epsilon(t) in equation 4.3
number var // square of sigma
sdreport_matrix P(0,nstates-1,0,nstates-1);
number ff1;
vector qb1(0,1);
matrix qb2(0,1,0,1);
3darray qb3(0,1,0,1,0,1);
4darray qb4(0,1,0,1,0,1,0,1);
5darray qb5(0,1,0,1,0,1,0,1,0,1); // !!5
7darray qb(op1,nperiods,0,1,0,1,0,1,0,1,0,1,0,1);
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7darray qa(op1,nperiods,0,1,0,1,0,1,0,1,0,1,0,1);
7darray eps(op1,nperiods,0,1,0,1,0,1,0,1,0,1,0,1);
7darray eps2(op1,nperiods,0,1,0,1,0,1,0,1,0,1,0,1);
7darray prob(op1,nperiods,0,1,0,1,0,1,0,1,0,1,0,1);
objective_function_value ff;

PROCEDURE_SECTION
P=Pcoff;
dvar_vector ssum=colsum(P); // form a vector whose elements are the

// sums of the columns of P
ff+=norm2(log(ssum)); // this is a penalty so that the Hessian will

// not be singular and the coefficients of P
// will be well defined

// normalize the transition matrix P so its columns sum to 1
int j;
for (j=0;j<=nstates-1;j++)
{
for (int i=0;i<=nstates-1;i++)
{
P(i,j)/=ssum(j);

}
}

dvar_matrix ztrans(0,1,1,nperiods);
ztrans(0)=y-a0;
ztrans(1)=y-a0-a1;
z=trans(ztrans);
int t,i,k,l,m,n,p;

qb1(0)=(1.0-P(1,1))/(2.0-P(0,0)-P(1,1)); // unconditional distribution
qb1(1)=1.0-qb1(0);

// for periods 2 through 4 there are no observations to condition
// the state distributions on so we use the unconditional distributions
// obtained by multiplying by the transition matrix P.
for (i=0;i<=1;i++) {
for (j=0;j<=1;j++) qb2(i,j)=P(i,j)*qb1(j);

}

for (i=0;i<=1;i++) {
for (j=0;j<=1;j++) {
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for (k=0;k<=1;k++) qb3(i,j,k)=P(i,j)*qb2(j,k);
}

}

for (i=0;i<=1;i++) {
for (j=0;j<=1;j++) {
for (k=0;k<=1;k++) {
for (l=0;l<=1;l++) qb4(i,j,k,l)=P(i,j)*qb3(j,k,l);

}
}

}
// !!5
for (i=0;i<=1;i++) {
for (j=0;j<=1;j++) {
for (k=0;k<=1;k++) {
for (l=0;l<=1;l++) {
for (m=0;m<=1;m++) qb5(i,j,k,l,m)=P(i,j)*qb4(j,k,l,m);

}
}

}
}
// qb(6) is the probability of being in one of 64
// states (64=2x2x2x2x2x2) in periods 5,4,3,2,1 before observing
// y(6)
for (i=0;i<=1;i++) {
for (j=0;j<=1;j++) {
for (k=0;k<=1;k++) {
for (l=0;l<=1;l++) {
for (m=0;m<=1;m++) { // !!5
for (n=0;n<=1;n++) qb(op1,i,j,k,l,m,n)=P(i,j)*qb5(j,k,l,m,n);

}
}

}
}

}
// now calculate the realized values for epsilon for all
// possible combinations of states
for (t=op1;t<=nperiods;t++) {
for (i=0;i<=1;i++) {
for (j=0;j<=1;j++) {
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for (k=0;k<=1;k++) {
for (l=0;l<=1;l++) {
for (m=0;m<=1;m++) {
for (n=0;n<=1;n++) { // !!5
eps(t,i,j,k,l,m,n)=z(t,i)-phi(z(t-1,j),
z(t-2,k),z(t-3,l),z(t-4,m),z(t-5,n),f);

eps2(t,i,j,k,l,m,n)=square(eps(t,i,j,k,l,m,n));
}

}
}

}
}

}
}
// calculate the mean squared "residuals" for use in
// "undimensionalized" parameterization of sigma
dvariable eps2sum=sum(eps2);
var=smult*eps2sum/(64.0*(nperiods-4)); //!!5
sigma=sqrt(var);

for (t=op1;t<=nperiods;t++) {
for (i=0;i<=1;i++) {
for (j=0;j<=1;j++) {
for (k=0;k<=1;k++) {
for (l=0;l<=1;l++) //!!5
prob(t,i,j,k,l)=exp(eps2(t,i,j,k,l)/(-2.*var))/sigma;

}
}

}
}

for (i=0;i<=1;i++) {
for (j=0;j<=1;j++) {
for (k=0;k<=1;k++) {
for (l=0;l<=1;l++) {
for (m=0;m<=1;m++) {
for (n=0;n<=1;n++) qa(op1,i,j,k,l,m,n)= qb(op1,i,j,k,l,m,n)*
prob(op1,i,j,k,l,m,n);

}
}

4-17



}
}

}
ff1=0.0;
qbefore(op1,0)=sum(qb(op1,0));
qbefore(op1,1)=sum(qb(op1,1));
qafter(op1,0)=sum(qa(op1,0));
qafter(op1,1)=sum(qa(op1,1));
dvariable sumqa=sum(qafter(op1));
qa(op1)/=sumqa;
qafter(op1,0)/=sumqa;
qafter(op1,1)/=sumqa;
ff1-=log(1.e-50+sumqa);
for (t=op1+1;t<=nperiods;t++) { // notice that the t loop includes 2
for (i=0;i<=1;i++) { // i,j,k,l,m blocks
for (j=0;j<=1;j++) {
for (k=0;k<=1;k++) {
for (l=0;l<=1;l++) {
for (m=0;m<=1;m++) {
for (n=0;n<=1;n++) { //!!5
qb(t,i,j,k,l,m,n).initialize();
// here is where having 6 dimensional arrays makes the
// formula for moving the state distributions form period
// t-1 to period t easy to program and understand.
// Throw away n and accumulate its two values into next
// time period after multiplying by transition matrix P
for (p=0;p<=1;p++) qb(t,i,j,k,l,m,n)+=P(i,j)*
qa(t-1,j,k,l,m,n,p);

}
}

}
}

}
}
for (i=0;i<=1;i++) {
for (j=0;j<=1;j++) {
for (k=0;k<=1;k++) {
for (l=0;l<=1;l++) {
for (m=0;m<=1;m++) { // !!5
for (n=0;n<=1;n++) qa(t,i,j,k,l,m,n)=qb(t,i,j,k,l,m,n)*
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prob(t,i,j,k,l,m,n);
}

}
}

}
}
qbefore(t,0)=sum(qb(t,0));
qbefore(t,1)=sum(qb(t,1));
qafter(t,0)=sum(qa(t,0));
qafter(t,1)=sum(qa(t,1));
dvariable sumqa=sum(qafter(t));
qa(t)/=sumqa;
qafter(t,0)/=sumqa;
qafter(t,1)/=sumqa;
ff1-=log(1.e-50+sumqa);

}
ff+=ff1;
ff+=.1*norm2(f);

REPORT_SECTION
dvar_matrix out(1,2,op1,nperiods);
out(1)=trans(qbefore)(1);
out(2)=trans(qafter)(1);
{
ofstream ofs("qbefore4.tex");
for (int t=5;t<=nperiods;t++)
{
ofs << (t-4)/100. << " " << qbefore(t,0) << endl;

}
}
{
ofstream ofs("qafter4.tex");
for (int t=5;t<=nperiods;t++)
{
ofs << (t-4)/100. << " " << qafter(t,0) << endl;

}
}
report << "#qbefore qafter" << endl;
report << setfixed << setprecision(3) << setw(7) << trans(out) << endl;

RUNTIME_SECTION
maximum_function_evaluations 20000
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convergence_criteria 1.e-6
TOP_OF_MAIN_SECTION
arrmblsize=500000;
gradient_structure::set_GRADSTACK_BUFFER_SIZE(400000);
gradient_structure::set_CMPDIF_BUFFER_SIZE(2100000);
gradient_structure::set_MAX_NVAR_OFFSET(500);

GLOBALS_SECTION
#include <fvar.hpp>
// !!5
dvariable phi(const dvariable& a1,const dvariable& a2,const dvariable& a3,
const dvariable& a4,const dvariable& a5,const dvar_vector& f)

{
return a1*f(1)+a2*f(2)+a3*f(3)+a4*f(4)+a5*f(5);

}
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Chapter 5

Econometric Models:
Simultaneous Equations

5.1 Simultaneous equations models

For each t, 1 ≤ t ≤ T let yt be an n-dimensional vector and xt be an n-dimensional vector.
Let B and Γ be (n× n) and (n×m) matrices, and suppose that the relationship

Byt + Γxt = ut

holds, where the ut are n-dimensional random vectors of disturbances. The yt are the en-
dogenous variables in the system. The xt are predetermined variables in the sense that they
are independent of ut. Note that for autoregressive models, the xt may contain values of yj
for j < i. In general, not all of the coefficients of B and Γ are estimable. Interesting cases
have special structure that are determined by the particular parameterization of of B, Γ,
and D. In particular, it is generally assumed that Bii = 1 for 1 ≤ i ≤ n and that B−1 exists.

5.2 Full information maximum likelihood (fiml)

Assume that for each t, ut has a multivariate normal distribution with mean 0 and covariance
matrix D. The log-likelihood function for B,Γ, and D is given by

L(B,Γ, D) = T/2 log
(
|B|2

)
− T/2 log

(
|D|
)
− 1/2

T∑
t=1

[Byt + Γxt]
′D−1[Byt + Γxt] (5.1)
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5.3 Concentrating out D for the fiml

If there are no constraints on D, the value of D that maximizes (5.1) can be solved for in
terms of the other parameters and observations. This value, D̂, is given by

D̂ = 1/T
T∑
t=1

[Byt + Γxt]
′[Byt + Γxt] (5.2)

By substituting this value into equation (5.1), it can be shown that

1/2
T∑
t=1

[Byt + Γxt]
′D̂−1[Byt + Γxt]

is a constant that can be ignored for the maximization, so equation (5.2), this:

L̃(B,Γ) = T/2 log
(
|B|2

)
− T/2 log

(
|D̂|
)

(5.3)

plus the fiml estimates for B and Γ can be found by maximizing L̃(B,Γ).
When there are constraints on the parameters of D, then D̃ is no longer the maximum

likelihood estimate for D. So, it is necessary to maximize equation (5.1), which is, in general,
a numerically unstable problem. To successfully carry out the optimization, it is necessary
to obtain reasonable initial estimates for the parameters of B and Γ, and to use a good
method for parameterizing D. Initial estimates for B and Γ can be obtained from ordinary
least squares (ols), that is, finding the values of B and Γ that minimize

T∑
t=1

‖yt −B−1Γxt‖2

To parameterize D, note that D̂ is an estimate of D, so we can parameterize D by

D = AD̂A′

where A is a lower triangular matrix. If U is the Choleski decomposition of D and Û is
the Choleski decomposition of D̂, then A = Û−1U . It follows that A should be close to the
identity matrix, which is a good initial estimate for A.
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5.4 Evaluating the model’s performance
To evaluate the model’s performance, simulated data were generated. The form of the
model is

yt1 + yt4 + yt5 − 2 + 0.45yt−1,1 = ut1

0.1yt1 + yt2 + 2.0yt5 − 1− 0.6yt−1,1 + 0.25yt−1,2 = ut2

0.3yt1 − 0.2yt2 + yt3 + 1 = ut3

1.4yt2 − 3.1yt3 + yt4 + 1 = ut4

yt3 + yt4 + yt5 = ut5 (5.4)

with a covariance matrix

D =


0.512 0.32 0.256 −1.28 0
0.32 0.328 −0.16 −0.8 0
0.256 −0.16 1.728 0.16 0.8
−1.28 −0.8 0.16 4.8 0.8

0 0 0.8 0.8 0.928



B =


1 0 0 1 1

0.1 1 0 0 2
0.3 −0.2 1 0 0
0 1.4 −3.1 1 0
0 0 1 1 1



Γ =


−2 0.45 0
−1 −0.6 0.25
1 0 0
1 0 0
0 0 0


For this model, n = 5, m = 3, and xt = (1, yt−1,1, yt−1,2).
The eigenvalues of D are (0.006610.135830.49622.211625.44573). Having a small eigen-

value tends to produce simulated data that are difficult to analyze.
Forty time periods of data were generated by the simulator. The simulated y values are:

1.63252 3.00223 1.70246 1.34813 -1.12202
-2.87857 -7.72402 -3.88482 -1.24196 4.71024
1.12975 -7.92719 -3.85188 -2.33007 4.2984
1.48112 -2.25692 -1.15585 -2.26166 3.01061

5-3



-2.91887 -5.65015 -2.74198 -0.695815 4.51346
2.29715 0.524946 0.0268777 1.07624 -0.0898846
1.32854 6.17993 2.51613 1.67248 -2.39914
0.5661 -2.53219 -0.966376 0.00820516 1.76543
0.353591 -3.81146 -2.04431 -1.48574 2.67208
-2.22887 -2.33436 -1.66284 0.646399 2.26448
2.29896 -6.42238 -2.41106 -1.70633 3.50028
0.145878 1.85161 0.646578 -0.380955 0.709761
-0.779376 -7.60611 -3.79636 -1.63017 4.02658
-0.107371 -5.61361 -2.35816 -1.77719 3.67762
0.662221 -5.78832 -2.19632 -2.03071 4.37961
-0.570661 -7.42505 -3.28544 -2.94125 5.19422
0.0953742 -1.80617 -1.06915 -0.0320784 2.00018
-0.406986 -4.96143 -2.8084 -0.948902 3.1811
1.07219 -7.92608 -2.95484 -3.17022 5.12702
-0.495144 1.33611 -0.357291 -0.0260083 0.360653
-0.637878 -8.76117 -3.81638 -1.77116 4.82796
1.59717 -3.18571 -1.72708 -1.93975 2.79462
-1.13013 -2.20942 -1.30198 -0.603895 2.29486
-1.0103 -7.90106 -3.65303 -1.07367 4.66283
-1.02985 -3.00268 -1.63388 0.309992 2.97876
0.176882 -7.96282 -3.60299 -1.86289 4.86943
1.16904 -1.07952 -0.0969977 -0.74563 2.38399
-0.636119 -2.84841 -1.43676 -0.38474 2.51142
-1.72929 -5.39866 -2.51289 0.0978131 3.786
3.56302 3.79343 2.05613 1.43836 -1.2029
0.15806 -0.863882 -0.302119 -1.19212 1.38518
1.37323 -1.94413 -0.537631 -0.751294 1.42083
-0.404075 -8.53817 -3.58618 -3.33976 5.69071
0.362091 -5.78568 -2.46635 -2.33359 4.21899
-2.26158 -12.7075 -6.07426 -3.62455 8.49292
1.20438 -5.44629 -2.30249 -2.02905 3.82742
1.41463 -1.71734 -0.788698 -1.90306 2.2595
0.897156 1.28039 0.693579 0.318737 0.385857
-0.0330384 -1.55642 -0.189474 0.312385 1.57168
1.5747 0.827181 1.26032 0.813312 0.270432

For the x values, the first time periods data x0 = (1, 1, 2) were supplied. The simulated x
values are:

1 1 2
1 1.63252 3.00223
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1 -2.87857 -7.72402
1 1.12975 -7.92719
1 1.48112 -2.25692
1 -2.91887 -5.65015
1 2.29715 0.524946
1 1.32854 6.17993
1 0.5661 -2.53219
1 0.353591 -3.81146
1 -2.22887 -2.33436
1 2.29896 -6.42238
1 0.145878 1.85161
1 -0.779376 -7.60611
1 -0.107371 -5.61361
1 0.662221 -5.78832
1 -0.570661 -7.42505
1 0.0953742 -1.80617
1 -0.406986 -4.96143
1 1.07219 -7.92608
1 -0.495144 1.33611
1 -0.637878 -8.76117
1 1.59717 -3.18571
1 -1.13013 -2.20942
1 -1.0103 -7.90106
1 -1.02985 -3.00268
1 0.176882 -7.96282
1 1.16904 -1.07952
1 -0.636119 -2.84841
1 -1.72929 -5.39866
1 3.56302 3.79343
1 0.15806 -0.863882
1 1.37323 -1.94413
1 -0.404075 -8.53817
1 0.362091 -5.78568
1 -2.26158 -12.7075
1 1.20438 -5.44629
1 1.41463 -1.71734
1 0.897156 1.28039
1 -0.0330384 -1.55642
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5.5 Results of (fiml) for unconstrained D

For the estimation process, all the elements of the matrices B and Γ with value 0 were fixed
at their correct value. The fiml estimates for unconstrained covariance matrix D are given
below.

B =


1 0 0 0.364395 0.364395

0.238411 1 0 0 1.37593
0.042875 −0.330484 1 0 0

0 1.93026 −4.90367 1 0
0 0 1.06339 1.09851 1



Γ =


−0.917978 0.431377 0
0.473915 −0.491422 0.19981
0.441089 0 0
−0.126701 0 0

0 0 0



D =


0.938236 0.843743 0.506127 −1.38383 0.314262
0.843743 1.55844 0.732235 −0.591771 1.37195
0.506127 0.732235 0.430091 −0.805866 0.62244
−1.38383 −0.591771 −0.805866 4.18591 −0.0363513
0.314262 1.37195 0.62244 −0.0363513 1.75939


5.6 Results of (fiml) for constrained D

Since D51 = 0 and D52 = 0, these values were not well estimated by the unconstrained
fiml procedure. Suppose that we know that their values should be 0 and that the value of
D55 ≤ 1.0. We incorporate this knowledge into the model by using penalty functions.

B =


1 0 0 0.594218 0.594218

−0.321482 1 0 0 1.97809
0.0416175 −0.365572 1 0 0

0 2.48468 −6.10763 1 0
0 0 0.968057 1.02738 1



Γ =


−1.3418 0.448342 0
−1.14717 −0.593754 0.183788
0.372114 0 0
−0.0640792 0 0

0 0 0
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D =


0.593424 −0.325467 0.298836 −1.43231 0.00401209
−0.325467 0.650371 −0.234747 0.441841 4.48456× 10−06

0.298836 −0.234747 0.258147 −0.900105 0.255262
−1.43231 0.441841 −0.900105 6.13619 0.180376

0.00401209 4.48456× 10−06 0.255262 0.180376 1.00262


5.7 Code for (fiml) for constrained D

This is the code in the tpl file, split up by sections and commented on. The DATA_SECTION
defines the data and some size aspects of the model structure. Objects that are prefixed by
init_ will be read in from the data file.

// This version incorporates constraints via penalty functions.
//This is sample code to determine the parameters of a
// simultaneous equations model. The notation follows
// that of Hamilton, Times Series Analysis, chapter 9.
// the general form of the model is
//
// By_t + Gamma x_t =u_t
//
//for t=1,...,T. The u_t have covariance matrix D.

DATA_SECTION
init_int T // the number of observations
init_int dimy // dimension of the vector of

// endogenous variables
init_int dimx // dimension of the vector of

// predetermined variables
init_int num_Bpar // the number of parameters in

// the elements of B to be estimated
init_int num_Gpar // the number of parameters in

// the elements of Gamma to be estimated
init_matrix y(1,T,1,dimy) // the y_t
init_matrix x(1,T,1,dimx) // the x_t
int dimy1
!! dimy1=dimy*(dimy+1)/2; // size of symmetric matrix

The PARAMETER_SECTION describes the model’s parameters. Objects which are prefixed
by init_ are the independent variables of the model. For example, Bpar is used to pa-
rameterize the nonzero elements of B. ch_Dpar is used to parameterize the lower triangular
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matrix of the correction from emp_D to the covariance matrix D. The minimization is done
in a number of phases. The parameter kx is used to have a parameter that becomes active
in phase 4, so that the minimization will take place in four stages. This parameter does not
enter into the “real” part of the model.

PARAMETER_SECTION
init_vector Bpar(1,num_Bpar)
init_vector Gpar(1,num_Gpar)
init_vector ch_Dpar(1,dimy1,2)
matrix B(1,dimy,1,dimy)
matrix D(1,dimy,1,dimy) // the covariance matrix for the

// disturbances u_t
matrix emp_D(1,dimy,1,dimy) // the covariance matrix for the
matrix Gamma(1,dimy,1,dimx)
matrix ch_D(1,dimy,1,dimy)
matrix z(1,T,1,dimy);
objective_function_value f
init_number kx(4);

The PROCEDURE_SECTION is where the model’s calculations are carried out. It is split up
into a set of functions where the model-specific pieces of code (different code for different
models) are located. Finally, the optimization for parameter estimation is calculated. This
depends on the phase of the optimization procedure. A switch statement is used to vary
the form of the objective function depending on the phase. The function current_phase()
returns the number of the current phase of the optimization. The function last_phase()
returns 1 (“true”) if the current phase is the last phase of the optimization. Quadratic penalty
functions are put on the model’s parameters, and these penalty weights are decreased in
subsequent phases. This procedure helps to stabilize the optimization when several model
parameters are highly correlated.

PROCEDURE_SECTION
fill_B(); // this will vary from model to model
fill_Gamma(); // this will vary from model to model

calculate_empirical_copvariance_matrix();

fill_D(); // this will vary from model to model

calculate_constraints(); // this will vary from model to model

int sgn;
switch (current_phase())
{
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case 1:
{
f+=0.1*norm2(Bpar);
f+=0.1*norm2(Gpar);
f+=0.1*norm2(ch_Dpar);
dvar_matrix Binv=inv(B);
for (int t=1;t<=T;t++)
{
dvar_vector z=y(t)+Binv*Gamma*x(t);
f+=z*z;

}
break;

}
default:
{
f+= -0.5*T*log(square(det(B)))
+0.5*T*ln_det(D,sgn);

dvar_matrix Dinv=inv(D);
dvariable f1=0.0;
for (int t=1;t<=T;t++)
{
dvar_vector z=B*y(t)+Gamma*x(t);
f1+=z*(Dinv*z);

}
f+=0.5*f1;
if (!last_phase())
{
f+=0.1*norm2(Bpar);
f+=0.1*norm2(Gpar);
f+=0.1*norm2(ch_Dpar);

}
else
{
f+=0.001*norm2(Bpar);
f+=0.001*norm2(Gpar);
f+=0.001*norm2(ch_Dpar);

}
}

}
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f+=square(kx);

FUNCTION fill_B
B.initialize();
for (int i=1;i<=dimy;i++)
B(i,i)=1.0;

// this is part of the special structure of the model
int ii=1;
B(2,1)=Bpar(1);
B(3,1)=Bpar(2);

B(3,2)=Bpar(3);
B(4,2)=Bpar(4);

B(4,3)=Bpar(5);
B(5,3)=Bpar(6);

B(5,4)=Bpar(7);
B(1,4)=Bpar(8);

B(1,5)=Bpar(8);
B(2,5)=Bpar(9);

FUNCTION fill_Gamma
Gamma.initialize();

// this is the part of special structure of the model
Gamma(1,1)=Gpar(1);
Gamma(2,1)=Gpar(2);
Gamma(3,1)=Gpar(3);
Gamma(4,1)=Gpar(4);

Gamma(1,2)=Gpar(5);
Gamma(2,2)=Gpar(6);

Gamma(2,3)=Gpar(7);
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FUNCTION fill_D

ch_D.initialize();
// this is the special structure of the model
int ii=1;
for (int i=1;i<=dimy;i++)
{
for (int j=1;j<=i;j++)
ch_D(i,j)=ch_Dpar(ii++);

ch_D(i,i)+=1;
}

D=ch_D*emp_D*trans(ch_D); // so Ch_D is the Choleski
// decomposition of D

FUNCTION calculate_empirical_covariance_matrix

for (int t=1;t<=T;t++)
z(t)=B*y(t)+Gamma*x(t);

emp_D=empirical_covariance(z);

FUNCTION calculate_constraints

double wt=1.0;
switch (current_phase())
{
case 1:
wt=1.0;
break;

case 2:
wt=10.0;
break;

case 3:
wt=100.0;
break;

default:
wt=1000.0;
break;
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}
if (D(5,5)>1.0)
f+=wt*square(D(5,5)-1.00);

f+=wt*square(D(5,1));
f+=wt*square(D(5,2));

The REPORT_SECTION prints out a report of the model’s results.

REPORT_SECTION
report << "B" << endl;
report << B << endl;
report << "Gamma" << endl;
report << Gamma << endl;
report << "D" << endl;
report << D << endl;
report << "eigenvalues of D" << endl;
report << eigenvalues(D) << endl;
report << "y" << endl;
report << y << endl;
report << "x" << endl;
report << x << endl;
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Chapter 6

Truncated Regression

6.1 Truncated linear regression

The linear regression model we consider here has the form

Yi =
m∑
j=1

ajxij + εi

where the Yi for i = 1, . . . , n are the n observations and the aj are m parameters to be
estimated. The εi are assumed to be normally distributed random variables with mean 0
and variance v.

Let ri = Yi −
∑m

j=1 ajxij. The log-likelihood function for the standard regression model
is given by

−.5n log(v)−
n∑
i=1

r2i
2v

Now assume that we only consider the Yi for Yi ≥ 0, i.e., the left truncated situation. The
probability that Yi ≥ 0 is equal to the probability that εI > −

∑m
j=1 ajxij. This is equal to

1− Φ(−
∑m

j=1 ajxij/v), where

Φ(u) =
1√
2π

∫ u

−∞
exp

(
−t2/2

)
dt

For this truncated regression, the log-likelihood function has the logarithm of this quantity
subtracted from it, so it becomes

−.5n log(v)−
n∑
i=1

r2i
2v
− log

(
1− Φ

(
−

m∑
j=1

ajxij/v

))
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If instead we consider the right truncated case, where only the Yi < 0 are considered, the
log-likelihood function becomes

−.5n log(v)−
n∑
i=1

r2i
2v
− log

(
Φ

(
−

m∑
j=1

ajxij/v

))

To parameterize v, we introduce a new parameter a satisfying the condition v = av̂,
where v̂ = 1

n

∑n
i=1 r

2
i is the usual maximum likelihood estimate for v. This leads to more

numerically stable behavior. In terms of a, the expression for the log-likelihood simplifies to

−.5n log(a)− .5n log(v̂)− n

2a
− log

(
1− Φ

(
−

m∑
j=1

ajxij/(av̂)

))

6.2 The AD Model Builder truncated
regression program

Here are the contents of the file truncreg.tpl:

DATA_SECTION
init_int nobs
init_int m
init_int trunc_flag
init_matrix data(1,nobs,1,m+1)
vector Y(1,nobs)
matrix X(1,nobs,1,m)
LOC_CALCS
Y=column(data,1);
for (int i=1;i<=nobs;i++)
{
X(i)=data(i)(2,m+1).shift(1);

}
PARAMETER_SECTION
sdreport_number sigma
number vhat
init_bounded_number log_a(-5.0,5.0);
sdreport_number a
init_vector u(1,m)
objective_function_value f

PROCEDURE_SECTION
a=exp(log_a);
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dvar_vector pred=X*u;
dvar_vector res=Y-pred;
dvariable r2=norm2(res);
vhat=r2/nobs;
dvariable v=a*vhat;
sigma=sqrt(v);

dvar_vector spred=pred/sigma;
f=0.0;
switch (trunc_flag)
{
case -1: // left_truncated
{
for (int i=1;i<=nobs;i++)
{
f+=log(1.00001-cumd_norm(-spred(i)));

}
}
break;

case 1: // right truncated
{
for (int i=1;i<=nobs;i++)
{
f+=log(0.99999*cumd_norm(-spred(i)));

}
}
break;

case 0: // no truncation
break;

default:
cerr << "Illegal value for truncation flag" << endl;
ad_exit(1);

}
f+=0.5*nobs*log(v)+0.5*r2/v;

REPORT_SECTION
report << "#u " << endl << u << endl;
report << "#sigma " << endl << sigma << endl;
report << "#a " << endl << a << endl;
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report << "#vhat " << endl << vhat << endl;
report << "#shat " << endl << sqrt(vhat) << endl;

6-4



Chapter 7

Multivariate garch

The Vector Autoregressive Moving Average Garch process combines the Vector Autoregres-
sive Moving Average (varma) processes with the Vector Garch (generalized autoregressive
conditional heteroscedastic) processes.

7.1 Formulation of the varma garch process

The varma garch process of type (p, q, r, s) is given by a series Yt for t = −p + 1, . . . , n,
where for each value of t, Yt is an m-dimensional vector. For t > 0, the Yt are assumed to
satisfy a relationship of the form

Yt = µ+

p∑
l=1

Al(Yt−l − µ) +

q∑
l=0

Blεt−l (7.1)

where the µ is an m-dimensional vector, Al and Bl are m ×m matrices, B0 is the identity
matrix, and the εt are multivariate (normal) random vectors, with means 0. Covariance
matrices Σt and E(εtεt′) = 0 if t 6= t′. Let

rt = Yt − µ−
p∑
l=1

Al(Yt−l − µ) (7.2)

be the vector of model residuals or “shocks.”1 These residuals are assumed to contribute to
the covariance matrix in the next time period. The Σt evolve according to one of several
relationships.

1For the moving average model (q > 0), one might argue that since the previous values of rt have been
observed, the shock part of rt, say, dt, is given by dt = rt −

∑q
l=1 Blrt−l, but this has not been done at

present.
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The dvec relationship

Σt = Ω +
r∑
l=1

Fl
⊗

rt−lr
′
t−l +

s∑
l=1

Gl

⊗
Σt−l (7.3)

In equation (7.3), the matrices Fl and Gl are symmetric and the operator ‘
⊗

’ denotes
the element-wise product of matrices. This parameterization does not restrict the result-
ing matrix to be positive definite, so some care is necessary to ensure the stability of the
resulting model.

The bekk relationship

Σt = Ω +
r∑
l=1

Fl rt−l r
′
t−l F

′
l +

s∑
l=1

Gl Σt−lG
′
l (7.4)

dveci and bekkai parameterizations

The basic dvec and bekk parameterizations can be extended by modifying components of
the rt to reflect the asymmetric response to positive and negative values.

ηij =εij/αj if εij ≥ 0

ηij =εijαj if εij < 0 (7.5)

This modified form will be referred to as the dveci and bekkai parameterizations.

Σt = Ω +
r∑
l=1

Ft
⊗

ηt−l η
′
t−l +

s∑
l=1

Gl

⊗
Σt−l (7.6)

Σt = Ω +
r∑
l=1

Fl ηt−l η
′
t−l F

′
l +

s∑
l=1

Gl Σt−lG
′
l (7.7)

7.2 Setting a value for Σ1

The value for the parameters in Σ1 are often poorly determined and simply letting them be
free parameters can lead to instability and initial transient effects in the model. To stabilize
the parameterization, we have calculated Σ1 through Σmax{r,s} from the condition

Ω̂ = Σ +

q∑
l=1

BlΣB
′
l (7.8)

where

Ω̂ =
1

n

n∑
t=1

ε̂t ε̂
′
t (7.9)
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denotes the empirical covariance matrix formed from the models residuals

ε̂t = Yt − µ−
p∑
l=1

Al(Yt−l − µ). (7.10)

7.3 Ensuring that the Σt are positive definite

The dvec parameterization can produce matrices that are not positive definite, and the
bekk parameterization can produce matrices that are almost not positive definite (much as
a positive number can get arbitrarily close to zero). At worst, this will lead to a failure in
the model to converge and at best, it makes the estimation somewhat unstable. To improve
model performance, the bekk and dvec operations are followed by a modification of the
resulting Σt that makes them more positive definite. The first problem is to get a notion of
what is meant by “small” for a particular problem. This is accomplished by first scaling the
Σt to produce a matrix Λt where

Λij =
Σtij√

ΣtijΣtij

(7.11)

The terms Λii are then bounded above 1.0× 10−3, i.e., they are replaced in a differentiable
fashion with numbers that are ≥ 1.0 × 10−3 using the posfun function. In addition, the
correlation matrix Λij/

√
ΛtijΛtij is decomposed via a Choleski decomposition, the divisors

of which is forced to be > 0.3 in a differentiable fashion using the posfun function. The
above operations leave a matrix that is sufficiently positive definite and close enough to Σ1

unchanged.

7.4 Missing data

Missing data points are included into the model as parameters to be estimated. If there are
a substantial number of missing data points, this will induce bias into the estimates.

7.5 The likelihood function

The model was fit by maximum-likelihood or, more correctly, by finding the mode of the
Bayesian posterior distribution. A robust likelihood function that is a mixture of a normal
distribution and a Cauchy distribution is employed. The amount of robustness can be
changed by the user.
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7.6 Model selection

Model selection consists of fitting the model to the data for various values of the parameters
(p, q, r, s) and trying to determine the simplest model that adequately fits the data, if any.

The two criteria which are used for this are the likelihood ratio test and investigation
of the residuals in the form of the Box-Ljung statistic. The likelihood-ratio test is used for
general model selection, while the Box-Ljung statistic is used to investigate whether or not
the model can adequately fit the changes in the covariance matrices Σt that occur over time.

7.7 The Box-Ljung statistic

The following Box-Ljung Statistic was employed to test the ability of the model to model the
time varying covariance structure of the time series. This statistic is calculated from the esti-
mated standardized residuals zt, for t = 1, . . . n, where for each t, zt is an m-dimensional vec-
tor. The zi are obtained in the calculations necessary to calculate the log-likelihood function.

µ̂j =
1

n

n∑
i=1

zij (7.12)

z′ij = zij − µ̂j (7.13)

σ̂jk =
1

n

n∑
i=1

z′ijz
′
ik (7.14)

γijk =
1
n−l
∑n−l

i=1(z′ijz
′
ik − σ̂jk)(z′i,j+lz′i,k+l − σ̂jk)

1
n

∑n
i=1(z

′
ijz
′
ik − σ̂jk)2

(7.15)

Under the null hypothesis that the model is adequate, and if the zi are normally dis-
tributed, then the sum

LB(K)ij = n
k∑
k=1

wkγ
2
ijk

is asymptotically distributed as a χ2 random variables with K degrees of freedom. Here,
wk = (n+ 2)/(n− k).

7.8 Analysis of simulated data

One method to get an idea how well a statistical model works is to use it with simulated
data where the true values of the parameters being estimated are known. A simple simulator
that can generate data sets is included with the mgarch package. The simulator generated a
4-dimensional set of 1,000 observations. A type 1, 1, 1, 1 process was simulated and analyzed.
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The following plots show the actual and predicted values for the diagonal variance and
correlation terms for the analysis with a type 1, 1, 1, 1 model.
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7.9 Analysis of real data
The data consist of daily observations of the German Mark/US Dollar and Japanese Yen/US
dollar exchange rates, as well as the SP-500 and Tokyo (tokyose) stock exchange indices.
For this data set, m = 4, and there were 1301 time periods with 211 missing values.

7.9.1 Model Parameters log-likelihood directory p, q, r, s.

VARMA
0,0,0,0 221 -1382.56 000
1,0,0,0 241 -1322.47 100
1,1,0,0 253 -1308.57 110

VARMA with DVEC
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0,0,1,1 241 -1050.87
1,1,2,1 283 -928.518
1,2,1,1 289 -924.755

VARMA with DVECI
1,1,2,1a 287 -887.764
1,2,1,1a 293 -888.531

7.9.2 Ljung-Box statistic (chi2 with 10 degrees of freedom).

VARMA
0,0,0,0 138.953 52.902 26.351 19.171

52.902 222.502 154.708 59.681
26.351 154.708 60.328 87.031
19.171 59.681 87.031 68.889

1,1,0,0 154.977 74.511 19.329 11.472
74.511 177.016 130.295 59.084
19.329 130.295 47.499 72.724
11.472 59.084 72.724 49.329

VARMA with DVEC
0,0,1,1 3.728 13.180 17.682 17.633

13.180 11.496 25.846 6.016
17.682 25.846 7.610 6.791
17.633 6.016 6.791 13.398

1,1,1,1 4.239 9.519 10.866 10.885
9.519 6.434 21.734 8.047
10.866 21.734 4.089 8.318
10.885 8.047 8.318 12.814

1,2,1,1 5.660 10.348 11.029 11.557
10.348 7.011 21.727 7.039
11.029 21.727 4.819 7.908
11.557 7.039 7.908 10.684

1,1,2,1 6.920 11.698 11.464 12.593
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11.698 4.914 24.677 8.179
11.464 24.677 2.399 8.855
12.593 8.179 8.855 10.985

VARMA with DVECI
1,2,1,1a 4.352 9.658 9.402 8.542

9.658 7.646 17.516 8.416O
9.402 17.516 5.795 7.108
8.542 8.416 7.108 10.483

1,1,2,1a 4.785 17.077 8.760 10.487
17.077 6.718 18.563 9.736
8.760 18.563 3.270 8.525
10.487 9.736 8.525 10.253

While the model 1, 1, 2, 1a produced almost as high a log-likelihood value as model
1, 2, 1, 1a, the superior performance of the latter model with respect to the Box-Ljung statis-
tic might prompt us to consider it the model of choice.

The following plots show the actual and predicted values for the diagonal variance and
correlation terms.
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7.10 Input format
By default, the stand-alone version of the model attempts to read in the data from a file
named mgarch.dat. This can be changed by a command line option. A reasonable command
line option would be:

mgarch -ind datafile -nox -nohess

The command

mgarch -?

will print out a list of command line options.
Part of a data file is shown below. The first line describes the data and specifies the

form of the model. The delta flag determines whether or not the parameters that measure
asymmetric response in the arch component of the model are estimated. The robustness
number controls the amount of robustness in the likelihood function. A value between 0.0
and 0.5 is probably appropriate. A value of 10,000 is used to indicate missing values in
the data.

# number of dimension p q r s delta robustness
# observations flag
1301 4 0 0 1 1 0 0

-0.473592 -0.30815 -0.199577 -0.154677
0.140859 -0.256788 -0.823379 -0.947582
-0.80579 -0.833361 2.439394 1.208645
-1.542773 -0.855767 0.469603 -0.433346
10000 10000 1.445218 0.462298
6.014853 4.964597 -0.189343 -0.231408
-1.064758 -1.700819 -3.143447 0.62605
-0.608465 -2.618972 1.641306 2.127487
-5.242424 2.902805 2.60543 -0.668981
2.205787 2.026769 -1.42811 -0.141505
// ..........................................

10000 10000 -1.072871 0.365977
-0.208759 1.51892 -0.59516 -0.029556
-2.413508 -2.578193 2.045828 -0.2362
0.890598 0.119672 -0.415587 0.029485
-2.797967 0.943489 -1.377787 0.283592
1.405865 1.915963 -0.696567 0.450668
10000 10000 -0.31709 0.255885
2.971906 -1.704494 0.835319 0.286408
-3.451449 1.233715 -1.144007 -0.322157

7-14



1.342827 0.376409 0.279213 0.226602

7.11 Output files

Since the model produces a lot of output, it is a good idea to run it in its own directory, so
files can be easily deleted. The independent variables of the optimization are in a file named
mgarch.par. (mgarch.bar is an equivalent binary file.) A more user-friendly report is in the
file mgarch.rep. The estimated covariances and correlations are in files named covar.XX
and correl.XX.

The model selection criteria have identified the model 1.1.1a as the best of the models
considered for these data.

Some parameters of interest are:

# alpha:
0.394461 0.538978 1.19337 0.969918
# A1:
-0.0531276 0.772529 -0.187692 -0.131215
0.0898897 -0.399746 -0.142294 -0.106079
0.0740065 0.248345 -0.0629680 -0.212928
0.0918460 -0.0575289 -0.0700786 0.0537302
# B1:
-0.00719450 -0.344793 0.115020 0.00516664
-0.0943230 0.474330 0.147845 0.0936166
-0.0860047 -0.243294 0.0187986 0.217280
-0.0815394 0.0843289 0.00782384 -0.0539808
# F:
-0.109526 -0.0292127 -0.122395 0.0548869
0.000332929 -0.0964482 0.0153865 -0.0346829
-0.0148848 -0.0146167 -0.117961 -0.0529385
-0.00504663 -0.000547068 0.00413882 -0.133956
# G:
0.930026 -0.269741 0.136401 0.427047
-0.0345549 -0.981606 0.00281003 -0.00411475
0.0976783 -0.0132467 -0.976596 0.0306139
0.117971 -0.0134465 0.00647385 -0.955173

For the four parameters αi, a value < 1 indicates that negative values seem to have a larger
effect on changes in the covariance structure than do positive ones. This effect seems to be
much larger in the dollar cross rates than in the stock exchanges indices.
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7.12 The code for the bekkgarch model

The code for the bekkgarch model follows. Additional comments have been added to
the code.

DATA_SECTION
// This section describes the data inputs to the model.
// By default they are read in from the file bekkgarch.dat.
init_int na // number of time periods
init_int m // dimension of the vector time series
init_int p // degree of autoregression must be >=0
init_int q // degree of moving average mult be >=0
init_int ra // degree of arch must be>=0
init_int sg // degree of arch must be>=0
init_int delta_switch // turns on asymmetric response to shocks
init_number robustness // amount of robustness probably something

// between 0 and .05 is right
int n
int msquared
!! n=na-p; // number of obs for conditional likelihood
init_matrix cY(-p+1,n,1,m) // the vector time series of observations
int nmiss
LOC_CALCS
msquared=m*m;
int ii=0;
int j;
int i;
for (i=-p+1;i<=n;i++)
for (j=1;j<=m;j++)
if (cY(i,j)==10000) ii++;

nmiss=ii;
END_CALCS
ivector rowmiss(1,nmiss)
ivector colmiss(1,nmiss)
LOC_CALCS
ii=1;
for (i=1;i<=n;i++)
for (j=1;j<=m;j++)
if (cY(i,j)==10000) {
rowmiss(ii)=i;
colmiss(ii)=j;
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ii++;
}

END_CALCS
int m1
int beginSigma
matrix Idm(1,m,1,m)
ivector beginF(1,ra)
ivector beginG(1,sg)
ivector beginA(1,p)
ivector beginB(1,q)
int nstart
LOC_CALCS
nstart=0;
if (nmiss>0) nstart=1;
m1=m*(m+1)/2; // "size" of n x n symmetric matrix
Idm=identity_matrix(1,m);
if (p) beginA.fill_seqadd(1+nstart,1);
if (q) beginB.fill_seqadd(p+1+nstart,1);
if (ra) beginF.fill_seqadd(p+q+1+nstart,1);
if (sg) beginG.fill_seqadd(p+q+1+nstart,1);
beginSigma=p+q+1+nstart;
END_CALCS
PARAMETER_SECTION
LOC_CALCS
int mm=m;
int dstart;
if (delta_switch>0)
dstart=p+q+2+nstart;

else
dstart=-1;

END_CALCS
// the initial values for the time series and disturbance as
// estimated parameters
init_bounded_vector mudev(1,m,-100,100,-1)
init_bounded_vector delta(1,m,.1,1.9,dstart)
vector mu(1,m)
vector esd(1,m)
vector muemp(1,m) // empirical covariance matrix
matrix Y(-p+1,n,1,m) // the vector time series of observations
init_matrix_vector A1(1,p,1,mm,1,mm,beginA) // pars for the AR coff matrices
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3darray A(1,p,1,m,1,m) // pars for the AR coff matrices
init_matrix_vector B1(1,q,1,mm,1,mm,beginB) // pars for the MA coff matrices
3darray B(0,q,1,m,1,m) // has the additional B(0)=Id
3darray Bt(0,q,1,m,1,m) // has the additional B(0)=Id
4darray cov(1,n,0,q,1,m,1,m) // the m x m blocks for the covariance
3darray TB_S(0,q,1,m,1,m)
matrix Omega(1,m,1,m)
3darray B_S(0,q,1,m,1,m)
init_bounded_vector v_Sigma(1,m1,-10,10.1,beginSigma); // pars for Sigma
matrix Semp(1,m,1,m)
matrix SSemp(1,m,1,m)
matrix ch_Sigma(1,m,1,m)
init_bounded_vector_vector Fcoff(1,ra,1,msquared,-1.000,1.0,beginF)
3darray F(1,ra,1,m,1,m)
3darray tF(1,ra,1,m,1,m)
init_bounded_vector_vector Gcoff(1,sg,1,msquared,-.98,.98,beginG)
LOC_CALCS
if (ra)
{
int mmin,mmax;
mmin=Fcoff(1).indexmin();
mmax=Fcoff(1).indexmax();
for (int ij=mmin;ij<=mmax;ij++) if (value(Fcoff(1)(ij))==0.0)
Fcoff(1)(ij)=0.02;

}
if (sg)
{
int mmin,mmax;
mmin=Gcoff(1).indexmin();
mmax=Gcoff(1).indexmax();
for (int ij=mmin;ij<=mmax;ij++) if (value(Gcoff(1)(ij))==0.0)
Gcoff(1)(ij)=0.001;

}
END_CALCS
3darray G(1,sg,1,m,1,m)
3darray tG(1,sg,1,m,1,m)
3darray Sigma(1,n,1,m,1,m)
init_bounded_vector missvals(1,nmiss,-5.0,5.0);
vector arpart(1,m)
matrix r(1,n,1,m)

7-18



3darray rr(1,n,1,m,1,m)
vector vecr(1,n*m) // VEC[r]
vector y(1,n*m)
number ldet
objective_function_value f
matrix Yv(-p+1,n,1,m) // after subtracting off the mean
!! int q1m=(q+1)*m;
!!CLASS banded_symmetric_dvar_matrix S(1,n*m,q1m);
PROCEDURE_SECTION
int t; int i; int j;
fill_matrices_with_independent_parameters();
Y=cY;
add_missing_values();
calculate_time_series_mean();
calculate_the_residuals();
calculate_the_empirical_covariance();
SSemp=get_initial_sigma();
dvariable fpen=calculate_the_sub_variances_BEKK();
calculate_the_sub_covariances();
calculate_the_covariance_matrix();
int ierr=0;
// choleski decomposition of a banded symmetric matrix
// produces a banded lower triangular matrix
dvariable fpen1=0.0;
banded_lower_triangular_dvar_matrix blt=choleski_decomp_positive(S,
1.e-6,fpen1);

fpen+=fpen1;
// solve for y=inv(blt)*vecr
y=solve(blt,vecr);
int ss=0;
dvariable lno=ln_det(Sigma(1),ss);
f+=norm2(log(delta));
for (i=1;i<=q;i++) f+=norm2(B1(i));
f+=norm2(v_Sigma);
for (i=1;i<=ra;i++) f+=norm2(F(i));
for (i=1;i<=sg;i++) f+=norm2(G(i));
dvariable lndet=0.0;
for (i=1;i<=n*m;i++) lndet+=log(blt(i,i));
// robust log-likelihood function -- mixture of normal and
// tiny bit of cauchy
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dvar_vector y2= square(y);
if (robustness>1.e-20)
f+= lndet - sum(log(mfexp(-0.5*y2)+robustness/(1.0+y2)));

else
f+= lndet - sum(log(mfexp(-0.5*y2)+.0001/(1.0+y2)));

f+=fpen;
(*ad_printf)("f = %lf\n",value(f));

FUNCTION fill_matrices_with_independent_parameters
int ii=1; int i=1; int iii;
double d=sqrt(0.1);
if (!sg) d=1.0;
ch_Sigma.initialize();
// this is the choleski decomp parameterization of the
// covariance matrix
for (i=1;i<=m;i++)
for (int j=1;j<=i;j++) {
if (i==j)ch_Sigma(i,i)+=d;
ch_Sigma(i,j)+=v_Sigma(ii++);

}
for (iii=1;iii<=ra;iii++) {
if (iii==1 || active(Fcoff(iii))) {
ii=1;
F(iii).initialize();
tF(iii).initialize();
for (i=1;i<=m;i++) {
for (int j=1;j<=m;j++)
F(iii)(i,j)=Fcoff(iii)(ii++);

}
}
tF(iii)=trans(F(iii));

}

for (iii=1;iii<=sg;iii++) {
if (iii==1 || active(Gcoff(iii))) {
ii=1;
G(iii).initialize();
tG(iii).initialize();
for (i=1;i<=m;i++) {
for (int j=1;j<=m;j++) {
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G(iii)(i,j)=Gcoff(iii)(ii++);
}
if (iii==1) G(iii)(i,i)+=0.90;

}
}
tG(iii)=trans(G(iii));

}
B.initialize();
A.initialize();
// B(0) is the identity matrix
B(0)=Idm;
for (i=1;i<=p;i++) A(i)=A1(i);
for (i=1;i<=q;i++) B(i)=B1(i);
for (i=0;i<=q;i++) Bt(i)=trans(B(i));

FUNCTION calculate_the_residuals
int t; int j;
mu=muemp+mudev;
for (t=-p+1;t<=0;t++) Yv(t)=Y(t)-mu;
for (t=1;t<=n;t++) {
Yv(t)=Y(t)-mu;
calculate_autoregressive_part(t);
r(t)=Yv(t)-arpart;

}
int ii=0;
// this corresponds to the VEC operator
for (int i=1;i<=n;i++)
for (j=1;j<=m;j++) vecr(++ii)=r(i,j);

FUNCTION void calculate_the_residuals2(dvar_matrix& e)
int t; int j;
mu=muemp+mudev;
for (t=-p+1;t<=0;t++) Yv(t)=Y(t)-mu;
for (t=1;t<=n;t++) {
Yv(t)=Y(t)-mu;
calculate_autoregressive_part(t);
e(t)=Yv(t)-arpart;
for (j=1;j<=q;j++) {
if (t<=j) break;
e(t)-=B(j)*e(t-j);
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}
}

FUNCTION calculate_the_sub_covariances
int i; int k; int l;
int qq=0;
for ( l=1;l<=q;l++) {
if (!active(B1(l))) break;
qq=l;

}
cov.initialize();
for (i=1;i<=n;i++) {
for (int l=0;l<=qq;l++) {
if (i<=l) break;
for (int k=0;k<=qq-l;k++) {
int ilk=i-l-k;
if (ilk<1) ilk=1;
cov(i,l)+=B(l+k)*Sigma(ilk)*Bt(k);

}
}

}

FUNCTION calculate_the_empirical_covariance
int i;
Semp.initialize();
ivector sgn(1,m);
esd.initialize();
for (i=1;i<=n;i++) {
esd+=square(r(i));

}
esd/=n;
esd=sqrt(esd);
if (active(delta)) {
dvar_vector mult_neg=elem_div(esd,delta);
dvar_vector mult_pos=elem_prod(esd,delta);
for (i=1;i<=n;i++) {
sgn.initialize();
dvar_vector sr=sfabs(elem_div(r(i),esd));
for (int j=1;j<=m;j++)
if (r(i,j)<0)
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sr(j)=-sr(j)*mult_neg(j);
else
sr(j)=sr(j)*mult_pos(j);

rr(i)=outer_prod(sr,sr);
}
Semp=empirical_covariance(r);

}
else
{
for (i=1;i<=n;i++) {
rr(i)=outer_prod(r(i),r(i));
Semp+=rr(i);

}
Semp/=n;

}
for (int j=1;j<=m;j++)
esd(j)=sqrt(Semp(j,j));

FUNCTION dvariable calculate_the_sub_variances_diagonal_vector_garch(void)
int i; int k; int ii; int jj;
dvar_vector norms(1,n);
dvariable fpen=0.0;
dvariable fpen1;
Omega=ch_Sigma*SSemp*trans(ch_Sigma);
Sigma.initialize();
// set the first Sigma equal to the empirical covariance
int rsmax=mymax(ra,sg);
Sigma(1)=SSemp;
//cout << Sigma(1) << endl;
dvar_matrix SS=scale(Sigma(1),esd);
//cout << SS << endl;
fpen+=positivize_sigma(SS);
//cout << SS << endl;
dvariable ns=norm(SS);
norms(1)=ns;
fpen1=0.0;
dvariable bn=mf_upper_bound(ns,1000.0,fpen1);
if (fpen1>0.0) {
SS*=(bn/ns);
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fpen+=fpen1;
}
Sigma(1)=unscale(SS,esd);
for (i=2;i<=rsmax;i++) {
Sigma(i)=Sigma(1);
norms(i)=norms(1);

}

int mmin=Sigma(1).indexmin();
int mmax=Sigma(1).indexmax();
dvar_vector s(mmin,mmax);
for (i=rsmax+1;i<=n;i++) {
Sigma(i)=Omega;
if (ra) Sigma(i)+=elem_prod(F(1),rr(i-1));
for (ii=2;ii<=ra;ii++) {
if (active(Fcoff(ii)))
Sigma(i)+=elem_prod(F(ii),rr(i-ii));

}

if (sg) Sigma(i)+=elem_prod(G(1),Sigma(i-1));
for (ii=2;ii<=sg;ii++) {
if (active(Gcoff(ii)))
Sigma(i)+=elem_prod(G(ii),Sigma(i-ii));

}

// "positivize" the
// correlation matrix
dvar_matrix SS=scale(Sigma(i),esd);
fpen+=positivize_sigma(SS);
dvariable ns=norm(SS);
norms(i)=ns;
fpen1=0.0;
dvariable bn=mf_upper_bound(ns,1000.0,fpen1);
if (fpen1>0.0) {
SS*=(bn/ns);
fpen+=fpen1;

}
Sigma(i)=unscale(SS,esd);

}
dvector trend(1,n);
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trend.fill_seqadd(-1,2.0/(n-1));
cout << "norms*trend/norm(norms)" << endl;
dvariable npen=norms*trend/norm(norms);
cout << norms*trend/norm(norms) << endl;
fpen+=npen;
if (fpen>1.0)
cout << " fpen = " << fpen << endl;

return fpen;

FUNCTION dvariable calculate_the_sub_variances_BEKK(void)
int i; int k; int ii; int jj;
dvar_vector norms(1,n);
dvariable fpen=0.0;
dvariable fpen1;
Omega=ch_Sigma*SSemp*trans(ch_Sigma);
Sigma.initialize();
// set the first Sigma equal to the empirical covariance
int rsmax=mymax(ra,sg);
Sigma(1)=SSemp;
dvar_matrix SS=scale(Sigma(1),esd);
fpen+=positivize_sigma(SS);
dvariable ns=norm(SS);
norms(1)=ns;
fpen1=0.0;
dvariable bn=mf_upper_bound(ns,1000.0,fpen1);
if (fpen1>0.0) {
SS*=(bn/ns);
fpen+=fpen1;

}
Sigma(1)=unscale(SS,esd);
for (i=2;i<=rsmax;i++) {
Sigma(i)=Sigma(1);
norms(i)=norms(1);

}

int mmin=Sigma(1).indexmin();
int mmax=Sigma(1).indexmax();
dvar_vector s(mmin,mmax);
for (i=rsmax+1;i<=n;i++) {
Sigma(i)=Omega;
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if (ra) Sigma(i)+=F(1)*rr(i-1)*tF(1);
for (ii=2;ii<=ra;ii++) {
if (active(Fcoff(ii)))
Sigma(i)+=F(ii)*rr(i-ii)*tF(ii);

}

if (sg) Sigma(i)+=G(1)*Sigma(i-1)*tG(1);
for (ii=2;ii<=sg;ii++) {
if (active(Gcoff(ii)))
Sigma(i)+=G(ii)*Sigma(i-ii)*tG(ii);

}

// "positivize" the
// correlation matrix
dvar_matrix SS=scale(Sigma(i),esd);
fpen+=positivize_sigma(SS);
dvariable ns=norm(SS);
norms(i)=ns;
fpen1=0.0;
dvariable bn=mf_upper_bound(ns,1000.0,fpen1);
if (fpen1>0.0) {
SS*=(bn/ns);
fpen+=fpen1;

}
Sigma(i)=unscale(SS,esd);

}
dvector trend(1,n);
trend.fill_seqadd(-1,2.0/(n-1));
cout << "norms*trend/norm(norms)" << endl;
dvariable npen=norms*trend/norm(norms);
cout << norms*trend/norm(norms) << endl;
fpen+=npen;
if (fpen>1.0)
cout << " fpen = " << fpen << endl;

{
//ofstream ofs("sigma");

//for (int i=1;i<=n;i++)
//ofs << Sigma(i) << endl << endl;

}
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return fpen;

FUNCTION dvar_matrix scale(dvar_matrix& M,dvar_vector& sd)
int mmin=sd.indexmin();
int mmax=sd.indexmax();
dvar_matrix SM(mmin,mmax,mmin,mmax);
for (int i=mmin;i<=mmax;i++)
for (int j=mmin;j<=mmax;j++)
SM(i,j)=M(i,j)/(sd(i)*sd(j));

return SM;

FUNCTION dvar_matrix unscale(dvar_matrix& M,dvar_vector& sd)
int mmin=sd.indexmin();
int mmax=sd.indexmax();
dvar_matrix SM(mmin,mmax,mmin,mmax);
for (int i=mmin;i<=mmax;i++)
for (int j=mmin;j<=mmax;j++)
SM(i,j)=M(i,j)*(sd(i)*sd(j));

return SM;

FUNCTION dvar_matrix get_initial_sigma(void)
int i,j,k,l,ll,m2,r,s;
m2=m*m;
dvar_matrix M(1,m2,1,m2);

dvar_vector v=VEC(Semp);
M=identity_matrix(1,m2);
for (ll=1;ll<=q;ll++)
{
for (i=1;i<=m;i++)
{
for (j=1;j<=m;j++)
{
int col=(i-1)*m+j;
for (r=1;r<=m;r++)
{
for (s=1;s<=m;s++)
{
int row=(r-1)*m+s;
M(row,col)+=B(ll)(r,i)*B(ll)(s,j);
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}
}

}
}

}
v=solve(M,v);
dvar_matrix tmp= MAT(v,m,m);
return tmp;

FUNCTION calculate_the_covariance_matrix
int ioffset; int joffset; int i1; int i; int j1;
int k; int l;
int qq=0;
for ( l=1;l<=q;l++) {
if (!active(B1(l))) break;
qq=l;

}
S.initialize();
for (i=1;i<=n;i++) {
ioffset=(i-1)*m;
for (int k=0;k<=qq;k++) {
//if (k>0 && !active(B1)) break;
joffset=(i-k-1)*m;
if (joffset<0) break;
for (i1=1;i1<=m;i1++) {
int up;
if (k==0)
up=i1;

else
up=m;

for (j1=1;j1<=up;j1++) {
int i2=i1+ioffset;
int j2=j1+joffset;
S(i1+ioffset,j1+joffset)=cov(i,k,i1,j1);

}
}

}
if (S(1,1) < 0)
cout << S(1,1) << endl;

}
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FUNCTION void calculate_autoregressive_part(int t)
// The user can put in any (nonlinear) function desired here
arpart.initialize();
for (int j=1;j<=p;j++) arpart+=A(j)*Yv(t-j);

REPORT_SECTION
int i; int ii; int jj, t;
for (ii=1;ii<=m;ii++)
{
for (jj=1;jj<=ii;jj++)
{
ofstream ofs((char*)("covar." + str(ii) +str(jj)));
ofstream ofs1((char*)("correl." + str(ii) +str(jj)));
dvar_matrix Covariance(1,m,1,m);
for (i=1;i<=n;i++) {
Covariance=Sigma(i);
for(int j=1;j<=q;j++)
if ( (i-j)>0 ) Covariance+=B(j)*Sigma(i-j)*trans(B(j));

ofs << Covariance(ii,jj) << endl;
ofs1 << Covariance(ii,jj)/
sqrt(Covariance(ii,ii)*Covariance(jj,jj))<< endl;

}
}

}

{
dvar_matrix ymat=MAT(y,n,m);
for (int i=1;i<=m;i++) {

ofstream ofs1((char*)("yres." + str(i)));
dvector tmp(1,n);
for (t=1;t<=n;t++)
tmp(t)=value(ymat(t,i));

ivector hist=histogram(-20,20,81,tmp);
ofs1 << column_print(hist) << endl;

}
}
report << "The means" << endl;
report << mu << endl;
for (i=1;i<=p;i++) {
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report << "A("<< i << ")" << endl;
report << setfixed() << setprecision(3) << A(i) << endl;

}
report << endl;
for (i=1;i<=q;i++) {
report << "B("<< i << ")" << endl;
report << setfixed() << setprecision(3) << B(i) << endl;

}
report << endl;
report << "delta" << endl;
report << setfixed() << setprecision(3) << delta << endl;
report << endl;
report << "Omega" << endl;
report << setfixed() << setprecision(3) << Omega << endl;
report << endl;
for (i=1;i<=ra;i++) {
report << "F("<< i << ")" << endl;
report << setfixed() << setprecision(3) << F(i) << endl;

}
report << endl;
for (i=1;i<=sg;i++) {
report << "G("<< i << ")" << endl;
report << setfixed() << setprecision(3) << G(i) << endl;

}
report << endl;
//report << setfixed() << setw(8) << setprecision(1) << S << endl;
{ // calculate predicted observations for next 20 time periods

// for graphs results are in t.1 t.2 etc
int npreds=20;
dvar_matrix e(1,n,1,m);
calculate_the_residuals2(e);

dvar_matrix Z(n+1,n+npreds,1,m);
Z.initialize();

for (int t=n+1;t<=n+npreds;t++) {
Z(t)+=mu;
for (int i=1;i<=p;i++) {
if (t-i>n)
Z(t)+=A(i)*(Z(t-i)-mu);
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else
Z(t)+=A(i)*(Y(t-i)-mu);

}
for (i=1;i<=q;i++) {
if (t-i<=n && t-i>0)
Z(t)+=B(i)*e(t-i);

}
}
for (i=1;i<=m;i++) {
ofstream ofs1((char*)("pred" + str(i)));
for (t=-p+1;t<=n;t++)
ofs1 << Y(t,i) << endl;

for (t=n+1;t<=n+npreds;t++)
ofs1 << Z(t,i) << endl;

}
}
dmatrix T(1,m,1,m);
dmatrix chi(1,m,1,m);
T.initialize();
dmatrix Aut(1,m,1,m);
Aut.initialize();
const int K=10;
d3_array gamma(1,K,1,m,1,m);
dmatrix cr(1,n,1,m);
for (i=1;i<=n;i++)
{
cr(i)=value(y((i-1)*m+1,i*m).shift(1));
T+=outer_prod(cr(i),cr(i));

}
T=T/n;
for (i=2;i<=n;i++)
{
Aut+=outer_prod(cr(i-1),cr(i));

}
Aut=Aut/(n-1);
for (i=1;i<=m;i++)
{
for (int j=1;j<=m;j++)
{
Aut(i,j)/=sqrt(T(i,i)*T(j,j));
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}
}
gamma.initialize();
for (int j=1;j<=m;j++)
{
for (int k=1;k<=m;k++)
{
for (int l=1;l<=10;l++)
{
double tmp=0;
for (i=1;i<=n-l;i++)
{
gamma(l,j,k)+=(cr(i,j)*cr(i,k)-T(j,k))*(cr(i+l,j)*cr(i+l,k)-T(j,k));
tmp+=square(cr(i,j)*cr(i,k)-T(j,k));

}
gamma(l,j,k)/=tmp;

}
}

}

chi.initialize();
for (int l=1;l<=K;l++)
{
chi+=n*(n+2)/(n-l)*square(gamma(l));

}

report << "Covariance of standardized residuals" << endl;
report << T << endl;
report << "Lag 1 autocorellation of standardized residuals" << endl;
report << Aut << endl;
report << "Ljung Box statistic based on chi squared with " << K

<< " degrees of freedom" << endl;
report << chi << endl;

FUNCTION add_missing_values
for (int ii=1;ii<=nmiss;ii++) {
Y(rowmiss(ii),colmiss(ii))=missvals(ii);

}
ofstream ofs("testy");
ofs << Y << endl;
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FUNCTION calculate_time_series_mean
muemp.initialize();
for (int i=-p+1;i<=n;i++) muemp+=Y(i);
muemp/=(n+p);

FUNCTION dvariable positivize_sigma(dvar_matrix& TS)
int ii,jj;
dvariable fpen=0.0;
int mmin=TS.indexmin();
int mmax=TS.indexmax();
dvar_vector s(mmin,mmax);
for (ii=mmin;ii<=mmax;ii++)
s(ii)=sqrt(posfun(TS(ii,ii),1.e-3,fpen));

for (ii=mmin;ii<=mmax;ii++)
for (jj=mmin;jj<=mmax;jj++)
TS(ii,jj)/=(s(ii)*s(jj));

TS=positive_definite_matrix(TS,.3,fpen);
for (ii=mmin;ii<=mmax;ii++)
for (jj=mmin;jj<=mmax;jj++)
TS(ii,jj)*=(s(ii)*s(jj));

return fpen;

GLOBALS_SECTION
// some C++ compilers don’t supply this!
int mymax(int x,int y)
{
if (x>y)
return x;

else
return y;

}

TOP_OF_MAIN_SECTION

ofstream ofs("Error.log");
arrmblsize=5000000;
gradient_structure::set_GRADSTACK_BUFFER_SIZE(560000);
gradient_structure::set_CMPDIF_BUFFER_SIZE(15000000);
gradient_structure::set_MAX_NVAR_OFFSET(1000);
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Chapter 8

The Kalman Filter

8.1 The Kalman filter
The Kalman filter is a device for estimating parameters in a class of “time-series”-like models
that are put into state-space form. We have used the notation from [6], Chapter 3. The
general state-space form is an multivariate time series

yt = Ztαt + dt + εt

where Zt is an N ×m matrix, dt is an N -dimensional vector, yt is an N -dimensional vector,
and εt is a set of serially uncorrelated N -dimensional random vectors with mean 0 and
correlation Ht. The elements of αt are not observable, but are assumed to be generated by
a first-order Markov process

αt = Ttαt−1 + ct +Rtηt

where Tt is an m×m matrix, ct is an m× 1 vector, Rt is an m× g matrix and ηt is a g × 1
vector of serially uncorrelated random vectors with mean 0 and covariance matrix Ht. The
specification of the state-space system is completed by two further assumptions:

1. The initial state vector α0 has a mean of a0 and a variance of P0.

2. The random vectors εt and ηt are uncorrelated with each other, and uncorrelated with
the initial state.

In applications of the model, many of the parameters Zt, dt, Ht, Tt, ct, Rt, and Qt may
be independent of t, in which case we will write them without the subscript. Also, R may
be the identity matrix, in which case we will omit it.

As a simple example of such a model, consider the (2-dimensional) random walk observed
with error:

αt =αt−1 + ηt

yt =αt + εt (8.1)
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For this model, the following parameters are fixed

T =

(
1 0
0 1

)
Z =

(
1 0
0 1

)
R =

(
1 0
0 1

)
d = (0, 0) c = (0, 0)

while the covariance matrices Q and H are estimated. The true values of Q and H used in
the simulation were

Q =

(
1 0.8

0.8 1

)
H =

(
3 −2.5
−2.5 3

)
and the initial value of a is (0, 0).

8.2 Equations for the Kalman filter
For a moment, go back to the general state-space model. Given a0 and P0, we recursively
calculate the a number of quantities via the relationships

at|t−1 = Tt at−1 + ct

Pt|t−1 = Tt Pt−1 T
′
t +RtQtR

′
t

vt = yt − Zt at|t−1 − dt
Ft = Zt Pt|t−1 Z

′
t +Ht

at = at|t−1 − Pt|t−1 Z ′t F−1t vt

Pt = Pt|t−1 − Pt|t−1 Z ′t F−1t Zt Pt|t−1 (8.2)

The log-likelihood function for the models parameters is given by:

logL = −NT
2

log 2π − 0.5
T∑
t=1

log |Ft| − 0.5
T∑
t=1

vtF
−1
t vt

The tpl file for the random walk Kalman filter code follows:

DATA_SECTION
init_int nt
init_int N
init_int m
int m1
init_matrix Y(1,nt,1,N)
matrix P0(1,m,1,m)
!! P0.initialize();
!! m1=m*(m+1)/2;
PARAMETER_SECTION
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init_bounded_vector Qcoff(1,m1,-10.,10.1)
init_bounded_vector Hcoff(1,m1,-10.,10.1)
init_vector a0(1,m)
matrix T(1,m,1,m)
matrix TT(1,m,1,m)
vector d(1,N)
vector c(1,m)
matrix chQ(1,m,1,m)
sdreport_matrix Q(1,m,1,m)
matrix chH(1,N,1,N)
sdreport_matrix H(1,N,1,N)
matrix Z(1,N,1,m)
matrix TZ(1,m,1,N)
objective_function_value f
LOCAL_CALCS
d.initialize();
c.initialize();
Z.initialize();
Z(1,1)=1; Z(2,2)=1;
T.initialize();
T(1,1)=1; T(2,2)=1;
TZ=trans(Z);
TT=trans(T);

PROCEDURE_SECTION
setup_Q();
setup_H();
f+=kalman_filter();
cout << " f = " << f << endl;

FUNCTION setup_Q
chQ.initialize();
int ii=1;
for (int i=1;i<=m;i++)
for (int j=1;j<=i;j++)
chQ(i,j)=Qcoff(ii++);

Q=chQ*trans(chQ);
FUNCTION setup_H
chH.initialize();
int ii=1;
for (int i=1;i<=N;i++)
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for (int j=1;j<=i;j++)
chH(i,j)=Hcoff(ii++);

H=chH*trans(chH);

FUNCTION dvariable kalman_filter(void)
dvar3_array P(0,nt,1,m,1,m);
dvar3_array P1(1,nt,1,m,1,m);
dvar3_array F(1,nt,1,N,1,N);
dvar3_array Finv(1,nt,1,N,1,N);
dvar_matrix Ptemp(1,m,1,m);
dvar_matrix a(0,nt,1,m);
dvar_matrix a1(1,nt,1,m);
dvar_matrix v(1,nt,1,N);
a(0)=a0;
P(0)=P0;
// This is the Kalman filter recursion. The objects tmp1
// and tmp2 hold common calculations to optimize a bit
int t;
for (t=1;t<=nt;t++)
{
a1(t)=T*a(t-1)+c;
P1(t)=T*P(t-1)*TT+Q;
dvar_vector pred_y=Z*a1(t)+d;
v(t)=Y(t)-pred_y;
dvar_matrix tmp1=P1(t)*TZ;
F(t)=Z*tmp1+H;
Finv(t)=inv(F(t));
dvar_matrix tmp2= tmp1*Finv(t);
P(t)=P1(t)-tmp2*Z*P1(t);
a(t)=a1(t)+tmp2*v(t);

}
int sgn=0;
dvariable f=0.0;
for (t=1;t<=nt;t++)
f+=ln_det(F(t),sgn)+v(t)*Finv(t)*v(t);

return f;
TOP_OF_MAIN_SECTION
arrmblsize=20000000;
gradient_structure::set_CMPDIF_BUFFER_SIZE(3000000);
gradient_structure::set_GRADSTACK_BUFFER_SIZE(1000000);
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This example was deliberately not optimized as much as it could be, in order to retain the
flavor of the more general state-space problem. For example, since T is the identity matrix
and c is the zero vector, the line of code
a1(t)=T*a(t-1)+c;

reduces to
a1(t)=a(t-1);

The parameters being estimated are a0, Q, and H.
To parameterize the covariance matrices, the Choleski decomposition parameterization

was used. This ensures that the covariance matrices are positive (semi-) definite. The
technique can be seen in the function setup_Q. The lower triangular matrix ch_Q is filled
with parameters from a bounded vector:
FUNCTION setup_Q
chQ.initialize();
int ii=1;
for (int i=1;i<=m;i++)
for (int j=1;j<=i;j++)
chQ(i,j)=Qcoff(ii++);

Q=chQ*trans(chQ); // chQ is the choleski decomposition of Q

Notice that the bounded vector Qcoff has slightly asymmetric bounds. This is a simple
way to ensure that its initial value is not identically zero, which would lead to a singular
covariance matrix.
init_bounded_vector Qcoff(1,m1,-10.,10.1)

The model parameters, standard deviations, and correlations are reproduced from the
standard admb report.
index name value std.dev 7 8 9 10 11 12 13 14 15 16

7 a0 -1.1682e+00 9.0191e-01 1.000
8 a0 1.2218e+00 8.6442e-01 0.352 1.000
9 Q 9.9468e-01 1.0862e-01 0.059 -0.006 1.000

10 Q 7.8808e-01 7.8737e-02 0.038 0.028 0.683 1.000
11 Q 7.8808e-01 7.8737e-02 0.038 0.028 0.683 1.000 1.000
12 Q 8.7279e-01 9.6118e-02 -0.018 0.069 0.185 0.721 0.721 1.000
13 H 3.1352e+00 1.8123e-01 -0.015 -0.007 -0.305 -0.136 -0.136 -0.018 1.000
14 H -2.7119e+00 1.4922e-01 -0.021 0.001 -0.102 -0.238 -0.238 -0.139 -0.692 1.000
15 H -2.7119e+00 1.4922e-01 -0.021 0.001 -0.102 -0.238 -0.238 -0.139 -0.692 1.000 1.000
16 H 3.2264e+00 1.7936e-01 0.015 -0.029 -0.031 -0.121 -0.121 -0.249 0.370 -0.698 -0.698 1.000

8.3 Parameterizing the covariance
matrix parameterizations

The Choleski decomposition parameterization merely ensures that the matrix is positive
semi-definite. By adding a small positive number to the diagonal elements, one can ensure
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that the covariance matrix is positive definite, and can speed up and improve the stability of
the estimation. Of course, what is meant by “small” will depend on the particular problem
being considered. A modified form of the routine setup_Q follows:

FUNCTION setup_Q
int i;
chQ.initialize();
int ii=1;
for (i=1;i<=m;i++)
for (int j=1;j<=i;j++)
chQ(i,j)=Qcoff(ii++);

Q=chQ*trans(chQ); // chQ is the choleski decomposition of Q
for (i=1;i<=m;i++)
Q(i,i)+=0.1; // make Q positive definite

Performing this modification for the present model for both Q and H causes the program to
converge about twice as fast.
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Chapter 9

Applying the Laplace Approximation
to the Generalized Kalman Filter:
with an Application to Stochastic
Volatility Models

Let yi be an N -dimensional multivariate time series for i = 1, . . . , n, where yi is a random
vector with probability density function p(yi|αi). For each i, the αi are random vectors that
satisfy the condition

αi = Ti(αi−1, yi−1) + ηi (9.1)

where µηi = 0 and σ2
ηi

= σ2
η.

Let p(α1) be the probability density function for α1 before y1 is observed. After observing
y1, we want to calculate the probability distribution of α1 given y1. This is given by

p(α1|y1) = p(y1|α1) p(α1)
/
p(y1) (9.2)

where
p(y1) =

∫ ∞
−∞

p(y1|α1) p(α1) dα1 (9.3)

Let φ(y1, α1) = log(p(y1|α1)p(α1)) and α̂1(y1) = maxα1{φ(y1, α1)}. Approximate φ by its
second-order Taylor expansion in α1 at α̂1.

φ(y1, α1) ≈ φ(y1, α̂1) +D2
α1α1

φ
(
y1, α̂1(y1)

)(
α1 − α̂1(y), α1 − α̂1(y)

)
(9.4)

so that

p(y) ≈ eφ(y1,α̂1(y1))

∫ ∞
−∞

exp

{
−
(
−D2

α1α1
φ
(
y1, α̂1(y1)

) (
α1 − α̂1(y), α1 − α̂1(y)

) )}
dα1 (9.5)
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Making a change of variables and integrating, we obtain

p(y1) ≈ eφ(y1,α̂1(y1))(2π)n/2
∣∣∣−D2

α1α1
φ
(
y1, α̂1(y1)

)∣∣∣−1/2 (9.6)

This is the Laplace approximation to the integral in equation (9.3).
If the distribution of α1 is (multivariate) normal and the distribution of y1|α1 is multi-

variate normal, then φ(y1, α1) is a quadratic function of α1, so the Laplace approximation is
exact. The advantage of the Laplace approximation is that it can be employed for non-normal
distributions.

To illustrate this advantage, consider the simple 1-dimensional case where α1 has a (uni-
variate) normal distribution with mean 0 and variance σ2

α. Assume that the distribution
of y1|α1 is a fat-tailed distribution, which is a mixture of 0.95 normal distribution and 0.05
Cauchy distribution. Then,

φ(y1, α1) = log

[
0.95 exp

(
− 0.5(y1 − α1)

2
/
σ2
y

)
+ 0.05

√
2/π
/(

1 + (y − α1)
2
/
σ2
y

)]
− 0.5α2

1

/
σ2
α + const (9.7)

whereas if y1 is assumed to have a normal distribution,

φ(y1, α1) = −0.5(y1 − α1)
2
/
σ2
y − 0.5α2

1

/
σ2
α + const (9.8)

where “const” denotes some constant independent of α1. There are two drawbacks to the
use of equation (9.8). If the value of y1 is an outlier from the point of the normal model,
then it will have too much influence on the mode of the estimate of p(α1|y1). Also, since the
variance

σ2
α1|y1 =

{
D2
α1α1

φ(y1, βi)
}−1

=
[
1/σ2

y + 1/σ2
α

]−1
(9.9)

is independent of the value of y1 observed, σ2
α1|y1 will be underestimated. This is incorrect

behavior, since if y1 is an outlier, it contains (almost) no information about the value of
p(α1|y1). So, p(α1|y1) should be almost equal to p(α1). The likelihood function based on
equation (9.7) has the desired behavior.

To calculate expression (9.6), it is necessary to maximize φ(y1, α1) with respect to α1,
and to calculate its Hessian matrix with respect to α1.

For the maximization, we employ the Newton-Raphson algorithm. Let β0 = µα1

βi+1 = βi −
{
D2
α1α1

φ(y1, βi)
}−1(

Dα1φ(y1, βi)
)

(9.10)

This operation is carried out a fixed number, r, times and then α̂1(y1) ≈ βr. For “well
behaved” problems, the sequence βi converges quadratically to α̂1(y1). We approximate
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p(α1|y1) by a multivariate normal with

µα1|y1 = βr

σ2
α1|y1 =

{
−D2

α1α1
φ(y1, βr)

}−1
and approximate p(α2|y1) by a multivariate normal with

µα2|y1 = T (βr, y1)

σ2
α2|y1 = Dα1 T1(βr, y1)σ

2
α1|y1Dα1 T1(βr, y1)

′ + σ2
η

Now,

p(y2|y1) =

∫ ∞
−∞

p(y2|α2) p(α2|y1) dα2 (9.11)

As above, we maximize the integrand of equation (9.11) with respect to α2 and use the
Laplace approximation to the integral. This produces the sequence of conditional probabil-
ities p(yi|yi−1). The log-likelihood function for the observed sequence yi is given by

n∑
i=1

log
(
p(yi|yi−1)

)
(9.12)

9.1 Parameter estimation

Although we have not explicitly shown them, the conditional likelihood functions p(yi|yi−1)
depend on a number of parameters. These parameters include the specification of T , other
parameters in the probability density p(yi|αi), and parameters that determine σ2

η. If we
denote these parameters by θ and write

(
p(yi|yi−1, θ)

)
to indicate this dependence, the log-

likelihood function becomes
n∑
i=1

log
(
p(yi|yi−1, θ)

)
(9.13)

The maximum likelihood estimates for the parameter vector θ are found by maximizing
expression (9.13) with respect to θ.

9.2 The stochastic volatility model

The version of the stochastic volatility model presented here is from [2].
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It is assumed that yi has a multivariate normal distribution with µyi = 0 and covariance
matrix Ωi(αi) = Hi(αi)RHi(αi). Hi(αi) is an m×m diagonal matrix whose jth element on
the diagonal is given by exp(αij)/2, where the αij satisfy the relationship

αi = w + elem_prod(δ, αi−1) + elem_prod(λ1, yi−1) + elem_prod(λ2, |yi−1|) + ηi (9.14)

where, in turn, ηi is a multivariate normal random variable with µηi = 0 and σ2
ηi

= σ2
η. If

u and v are two vectors with jth component uj and vj, elem_prod(i, v) is the vector with
jth component ujvj. R is an m × m positive definite matrix satisfying rjj = 1, that is, a
correlation matrix. Then,

log
(
p(yi|αi)

)
= −0.5 log |Ωi(αi)| − 0.5y′i Ωi(αi)

−1yi (9.15)

and the distribution of αi|yi−1 is multivariate normal, with mean vector and covariance
matrix given by

µαi|yi−1
= w + elem_prod(δ, µαi−1|yi−1

) + elem_prod(λ, yi−1) (9.16)

σ2
αi|yi−1

= i diag(δ)σ2
αi−1|yi−1

diag(δ) + σ2
η (9.17)

diag(δ) is the diagonal matrix whose diagonal is equal to the vector δ.

log
(
p(yi|αi) p(αi|yi−1)

)
= −0.5 log |Ωi(αi)| − 0.5y′iΩi(αi)

−1yi − 0.5 log |σ2
αi|yi−1

| (9.18)

− 0.5(αi − µαi|yi−1
)′(σ2

αi|yi−1
)−1(αi − µαi|yi−1

) (9.19)

To perform the Newton-Raphson calculations, it is necessary to calculate the first and second
derivatives of expression (9.18) with respect to the parameter vector α. This is the most
involved part of the calculations and will depend on the particular form of the model. In the
present case, the calculations are simplified by the fact that Ωi only depends on α through
the diagonal matrix H(αi).

The probability density function p(α1) is assumed to be multivariate normal with µα1 = θ0
and σ2

α1
= 0.

9.3 The data

The data consist of the daily Mark/Dollar and Yen/dollar exchange rates and the U.S. and
Japanese stock index data. There are 1301 time periods, with some missing data. The
missing data, which are denoted by the impossibly large value of 10,000, were replaced with
the average from the period before and after. They can, however, easily be estimated in the
model, if desired.
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9.4 The results
The model was fit with various combinations of the parameters, and the log-likelihood was
examined to investigate the improvement in fit due to the addition of the parameters. See
Table 9.1.

Parameters in model Number of parameters Log-likelihood

w, δ,R, σ2
η 24 3774.7

w, δ,R, σ2
η, λ1 28 3806.6

w, δ,R, σ2
η, λ1, θ0 32 3808.6

w, δ,R, σ2
η, λ1, θ0, λ2 36 3811.2

Table 9.1

The parameters θ0 and λ2 did not produce a significant improvement to the fit. λ2
measures the asymmetry in the response of the variance to positive and negative shocks.

Here are the parameter estimates and their standard deviations for the model with
w, δ,R, σ2

η, and λ1:

index name value std.dev
1 w(1) -1.3749e-001 4.9434e-002
2 w(2) -6.5649e-001 1.6161e-001
3 w(3) 3.1693e-002 1.0574e-002
4 w(4) -1.2973e-002 1.5375e-002
5 lambda1(1) 1.5564e-001 4.9688e-002
6 lambda1(2) 1.8647e-001 6.9525e-002
7 lambda1(3) -6.9265e-002 1.4158e-002
8 lambda1(4) -1.6689e-001 3.1626e-002
9 delta(1) 8.2229e-001 4.6074e-002
10 delta(1) 5.0848e-001 1.0785e-001
11 delta(1) 9.5763e-001 1.4602e-002
12 delta(1) 9.3610e-001 1.8812e-002
29 R(1,1) 1.0000e+000 0.0000e+000
30 R(1,2) 5.3821e-001 2.2883e-002
31 R(1,3) -7.1704e-002 2.9477e-002
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32 R(1,4) -3.8796e-002 2.9278e-002
33 R(2,1) 5.3821e-001 2.2883e-002
34 R(2,2) 1.0000e+000 0.0000e+000
35 R(2,3) -1.2932e-001 2.9111e-002
36 R(2,3) -4.1466e-002 2.9468e-002
37 R(3,1) -7.1704e-002 2.9477e-002
38 R(3,2) -1.2932e-001 2.9111e-002
39 R(3,3) 1.0000e+000 0.0000e+000
40 R(1,4) 8.8811e-002 2.9085e-002
41 R(4,1) -3.8796e-002 2.9278e-002
42 R(4,2) -4.1466e-002 2.9468e-002
43 R(4,3) 8.8811e-002 2.9085e-002
44 R(4,4) 1.0000e+000 0.0000e+000
45 Omega(1,1) 6.5973e-001 6.3099e-002
46 Omega(1,2) 1.9827e-001 1.6129e-002
47 Omega(1,3) -1.3395e-001 5.4982e-002
48 Omega(1,4) -3.5161e-002 2.6676e-002
49 Omega(2,1) 1.9827e-001 1.6129e-002
50 Omega(2,2) 2.0570e-001 2.3994e-002
51 Omega(2,3) -1.3489e-001 3.2608e-002
52 Omega(2,4) -2.0985e-002 1.5016e-002
53 Omega(3,1) -1.3395e-001 5.4982e-002
54 Omega(3,2) -1.3489e-001 3.2608e-002
55 Omega(3,3) 5.2895e+000 5.7872e-001
56 Omega(3,4) 2.2791e-001 7.9318e-002
57 Omega(4,1) -3.5161e-002 2.6676e-002
58 Omega(4,2) -2.0985e-002 1.5016e-002
59 Omega(4,3) 2.2791e-001 7.9318e-002
60 Omega(4,4) 1.2451e+000 1.7043e-001
61 Z(1,1) 2.3967e-001 7.4268e-002
62 Z(1,2) 2.0711e-001 5.5599e-002
63 Z(1,3) 3.8832e-002 1.8505e-002
64 Z(1,4) 2.4097e-002 2.0344e-002
65 Z(2,1) 2.0711e-001 5.5599e-002
66 Z(2,2) 4.6309e-001 1.1143e-001
67 Z(2,3) 3.4298e-002 2.3017e-002
68 Z(2,4) 9.6831e-003 2.9999e-002
69 Z(3,1) 3.8832e-002 1.8505e-002
70 Z(3,2) 3.4298e-002 2.3017e-002
71 Z(3,3) 3.9101e-002 1.6885e-002
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72 Z(3,4) 2.4602e-002 1.1053e-002
73 Z(4,1) 2.4097e-002 2.0344e-002
74 Z(4,2) 9.6831e-003 2.9999e-002
75 Z(4,3) 2.4602e-002 1.1053e-002
76 Z(4,4) 9.6109e-002 3.4268e-002

The AD Model Builder tpl file for the model is given below:

DATA_SECTION
init_int ndim
init_int nobs
int ndim1
int ndim2
!! ndim1=ndim*(ndim+1)/2;
!! ndim2=ndim*(ndim-1)/2;
init_matrix Y(1,nobs,1,ndim)
LOC_CALCS
// replace missing values (10000) with the average of before and after.
for (int i=2;i<nobs;i++)
for (int j=1;j<=ndim;j++)
if (Y(i,j)==10000)
{
int i2=i+1;
do
{
if (Y(i2,j)==10000)
i2++;

else
break;

}
while(1);
Y(i,j)=(Y(i-1,j)+Y(i2,j))/2.;
if (Y(i,j)>100.0) // did this work
cerr << " Y(i,j) too big " << Y(i,j) << endl;

}
END_CALCS

PARAMETER_SECTION
matrix h_mean(1,nobs,1,ndim)
3darray h_var(1,nobs,1,ndim,1,ndim)
number ldR;
init_vector theta0(1,ndim,3);
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vector lmin(1,nobs)
init_bounded_vector w(1,ndim,-10,10)
vector w1(1,ndim)
init_vector lambda(1,ndim,2)
init_vector lambda2(1,ndim,-1)
init_bounded_vector delta(1,ndim,0,.98)
sdreport_matrix R(1,ndim,1,ndim)
sdreport_matrix Omega(1,ndim,1,ndim)
matrix ch_R(1,ndim,1,ndim)
matrix Rinv(1,ndim,1,ndim)
init_bounded_vector v_R(1,ndim2,-1.0,1.0)
sdreport_matrix Z(1,ndim,1,ndim)
matrix ch_Z(1,ndim,1,ndim)
init_bounded_vector v_Z(1,ndim1,-1.0,1.0)
matrix S(1,ndim,1,ndim);
objective_function_value f

INITIALIZATION_SECTION
delta 0.9

PROCEDURE_SECTION

fill_the_matrices();
int sgn;
ldR=ln_det(R,sgn);
Rinv=inv(R);
dvar_vector tmp(1,ndim);
dvar_matrix sh(1,ndim,1,ndim);
h_mean(1)=theta0;
h_var(1)=0;
for (int i=2;i<=nobs;i++)
{
dvar_vector tmean=update_the_means(w,h_mean(i-1),Y(i-1));
dvar_matrix v=update_the_variances(h_var(i-1));
tmp=tmean;
dvar_vector h(1,ndim);
dvar_vector gr(1,ndim);
for (int ii=1;ii<=4;ii++) // do the Newton-Raphson 4 times
{
xfp12(tmp, Y(i),tmean,v,gr,sh); // get 1st and 2nd derivatives
h=-solve(sh,gr); //sh is hessian and gr is the gradient
tmp+=h; // add new step h

9-8



}
double nh=norm2(value(h)); // check size of h for convergence
if (nh>1.e-1)
cout << "No convergence in NR " << nh << endl;

if (nh>1.e+02)
{
f+=1.e+7; // this ensures that the function minimizer will take a
return; // smaller step

}
h_mean(i)=tmp;
h_var(i)=inv(sh);
lmin(i)=fp(tmp,Y(i),tmean,v);
int sgn;
f+=lmin(i)+0.5*ln_det(sh,sgn); // Laplace approximation

}
f-=0.5*nobs*ndim*log(2.*PI);
Omega=S;

FUNCTION dvar_vector update_the_means(dvar_vector& w,dvar_vector& m,dvector& e)
dvar_vector tmp= w+elem_prod(delta,m)+elem_prod(lambda,e);
if (active(lambda2))
tmp+=elem_prod(lambda2,fabs(e));

return tmp;

FUNCTION dvar_matrix update_the_variances(dvar_matrix& v)
dvar_matrix tmp(1,ndim,1,ndim);
for (int i=1;i<=ndim;i++)
{
for (int j=1;j<=i;j++)
{
tmp(i,j)=delta(i)*delta(j)*v(i,j);
if (i!=j) tmp(j,i)=tmp(i,j);

}
}
tmp+=Z;
return tmp;

FUNCTION dvariable fp(dvar_vector& h, dvector& y, dvar_vector& m,dvar_matrix& v)
dvar_vector eh=exp(.5*h);
for (int i=1;i<=ndim;i++)
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{
for (int j=1;j<=i;j++)
{
S(i,j)= eh(i)*eh(j)*R(i,j);
if (i!=j) S(j,i)=S(i,j);

}
}

dvariable lndet;
dvariable sgn;
dvar_vector u=solve(S,y,lndet,sgn);
dvariable l;
l=.5*lndet+.5*(y*u);
dvar_vector hm=h-m;
w1=solve(v,hm,lndet,sgn);
l+=.5*lndet+.5*(w1*hm);
return l;

FUNCTION void xfp12(dvar_vector& h, dvector& y,dvar_vector& m,dvar_matrix& v,
dvar_vector gr,dvar_matrix& hess)
dvar_vector ehinv=exp(-.5*h);
dvariable lndet;
dvariable sgn;
dvar_vector ys=elem_prod(ehinv,y);
dvar_vector u=Rinv*ys;
gr=0.5;
dvar_vector vv=elem_prod(ys,u);
gr-=.5*vv;
dvar_vector hm=h-m;
dvar_vector w=solve(v,hm,lndet,sgn);
gr+=w;
for (int i=1;i<=ndim;i++)
{
for (int j=1;j<=i;j++)
{
hess(i,j)=0.25*ys(i)*ys(j)*Rinv(i,j);
if (i!=j) hess(j,i)=hess(i,j);

}
}
for (i=1;i<=ndim;i++)
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{
hess(i,i)+=.25*vv(i);

}
hess+=inv(v);

FUNCTION fill_the_matrices
int ii=1;
ch_Z.initialize();
for (int i=1;i<=ndim;i++)
{
for (int j=1;j<=i;j++)
ch_Z(i,j)=v_Z(ii++);

ch_Z(i,i)+=0.5;
}
Z=ch_Z*trans(ch_Z);
ch_R.initialize();
ii=1;
for (i=1;i<=ndim;i++)
{
for (int j=1;j<i;j++)
ch_R(i,j)=v_R(ii++);

ch_R(i,i)+=0.1;
ch_R(i)/=norm(ch_R(i));

}
R=ch_R*trans(ch_R);

REPORT_SECTION
report<<"observed"<<Y<<endl;
for (int i=1;i<=nobs;i++)
{
report<< "mean" <<endl;
report<< h_mean(i) <<endl;
report<< "covariance" <<endl;
report<<h_var(i)<<endl;
report<<endl;

}
report<< "S(nobs) " << endl;
report<< Omega << endl;
report<< "Z " << endl;
report<< Z << endl;
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report<< "R " << endl;
report<< R << endl;

TOP_OF_MAIN_SECTION
arrmblsize=20000000;
gradient_structure::set_CMPDIF_BUFFER_SIZE(25000000);
gradient_structure::set_GRADSTACK_BUFFER_SIZE(1000000);
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Chapter 10

Using Vectors of Initial Parameter Types

This chapter introduces three new AD Model Builder types. They are

init_number_vector
init_vector_vector
init_matrix_vector

plus the bounded versions of these

init_bounded_number_vector
init_bounded_vector_vector
init_bounded_matrix_vector

To understand the usefulness of these objects, consider an application that has two init_number
objects:

PARAMETER_SECTION
init_bounded_number a1(0.2,1.0,1)
init_bounded_number a2(-1.0,0.3,2)

This creates two bounded numbers with different upper and lower bounds becoming active
in different phases of the minimization. Now, however, suppose that the number of numbers
we wish to have in the model depends on some integer read in at run time, such as:

DATA_SECTION
init_int n
// ...

PARAMETER_SECTION
// want to have n numbers
init_bounded_number a1(0.2,1.0,1)
init_bounded_number a2(-1.0,0.3,2)
// ....
init_bounded_number an(-4.0,-3.0,n)
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The above code is a sketch of what we want to achieve. It cannot be accomplished with that
kind of coding, of course, because at compile time, we don’t have the value for n, and in
any event, if n is large, this sort of coding is boring. Dynamic arrays are the answer to this
problem. One could try the following:

DATA_SECTION
init_int n
// ...

PARAMETER_SECTION
// want to have n numbers
init_bounded_vector a(1,n,-1.0,1.0,1)

but this won’t work, because for an init_bounded_vector, the bounds and the starting
phase are the same for all components of the vector. The init_bounded_number_vector
class is intended to solve this problem.

DATA_SECTION
init_int n
// ...

PARAMETER_SECTION
// need to create some vectors to hold the bounds and
// phase numbers
LOC_CALCS
dvector lb(1,n);
dvector ub(1,n);
ivector ph(1,n);
// get the desired values into lb,ub,ph somehow
lb.fill_seqadd(1,0.5);
ub.fill_seqadd(2,0.5);
ph.fill_seqadd(1,1);
END_CALCS
init_bounded_number_vector a(1,n,lb,ub,ph)

Then a(1) is an object of type init_bounded_number with bounds lb(1) and ub(1) be-
coming active in phase ph(1). Any of these three fields can be replaced with a number or
integer if the bound or phase number is constant, such as

init_bounded_number_vector a(1,n,1.0,ub,2)

where the lower bound is 1.0 and the phase number is 2.
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Chapter 11

Creating Dynamic Link Libraries
with AD Model Builder

For performance reasons, many nonlinear modeling routines for packages such as Splus or
Gauss, or spreadsheets such as Excel, are written in other languages, such as C or fortran,
and compiled as dlls or shared libraries. Due to AD Model Builder’s support for nonlinear
statistical modeling, it is generally much faster and easier to produce the code for a nonlinear
statistical model with admb rather than C or fortran. This code can then be put into a
shared library (dll) and called from Splus as though it were a part of the language.

This section focuses on creating dlls for Splus Version 4 Release 3, Gauss under Windows
95/NT, or for the R programming environment under Windows 95/NT or Linux. The
construction can be easily modified to produce dlls, which can be used by other programs,
such as Visual Basic, or spreadsheets like Excel.

There are two example programs: a very simple example to illustrate the ideas, and a
program to estimate the parameters from a mixture of two bivariate normal distributions.

We begin with the simple example. We wish to minimize the function f given by

f = (x1 − 1.0)2 +
n−1∑
i=1

(xi+1 − xi)2

with respect to the n-dimensional vector x. The starting values are x = (0, 0, . . . , 0).
While this is a quadratic function that can be solved by special methods, we do not

use this special structure, because we want to illustrate the technique on general nonlinear
models.

There are three modifications to a stand-alone AD Model Builder program that must be
made to produce a dll.

1. The command line option -dll is given to the tpl2cpp program, which translates the
template file into a C++ file. For Gauss, replace the -dll option with the -gausdll
option.
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2. The user must decide what data and parameter objects are to be passed to, or returned
from, the dll, and modify the tpl file accordingly.

3. The interface code must be written in the calling language.

Objects that are to be passed into, or returned from, the dll are identified by putting
the prefix dll_ before their declarations.

In this example, the number of independent variables is passed from the calling program
to the dll. Thus, init_int nvar is modified to dll_init_int nvar. The calling program
expects to get the minimum value freturn and the minimizing values of the init_vector x
returned to it, so they are declared to be of type dll_number and dll_init_vector.

DATA_SECTION
dll_int nvar

PARAMETER_SECTION
dll_init_vector x(1,nvar)
dll_number freturn
objective_function_value f

PROCEDURE_SECTION
f=square(x(1)-1.0);
for (int i=1;i<nvar;i++)
{
f+=square(x(i+1)-x(i));

}
freturn=f;

11.1 Compiling the code to produce a dll

The exact form of the commands used to produce a dll, or shared library, depend on the
compiler used and the operating system.

Assuming that the template file is named xxxx.tpl| for NT/9?, then using the gcc2.95-
mingw32 compiler, the commands are

tpl2cpp -dll %1

C++ -fpermissive -O3 -c -DBUILDING_DLL=1 -D__GNUDOS__ -I. i
-If:/admodel/include -o %1.o %1.cpp

dllwrap -def %1.def --implib lib%1.a --driver-name \cplus\ -o %1.dll %1.o
-Lf:/admodel/lib -ladmod -ladt -lado -lm

where the symbol %1 (this is a batch file argument, which would be $1 for Linux) should be
replaced by xxxx.
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Of course, you don’t want to type all this every time, so the commands should be replaced
in a .bat file, such as makedll.bat. Then, to compile the tpl into a dll, it is only necessary
to type

makeadll xxxx

where xxxx.tpl is the template file. For debugging purposes, you may find that you want
to edit the .cpp file, so you will not want to run tpl2cpp every time. In that case, the first
line should be removed from the .bat file.

To call the dll from Splus, the dll.load function is used to load the library.

dll.load("simpdll.dll",symbol="simpdll")
n<-100
x<-rep(0,n)
freturn<-0
ans<-.C("simpdll",as.integer(n),x = as.double(x),as.double(f)," -sp -crit 1.e-8 -nohess")

The final parameter, -sp -crit 1.e-8 -nohess, is a string that serves the same function
as command line options in AD Model Builder programs. The -sp option tells the dll that
it is being run from Splus, so it can print into the Splus command window. The -crit
option sets the convergence criterion for the magnitude of the components of the gradient,
and the -nohess option suppresses the calculation of the Hessian at the minimum. It must
be present, although it can be blank.

It is necessary for Splus to find the dll. If it has trouble doing so, a full path name can
be used as in:

dll.load("c://mydlls//simpdll.dll",symbol="simpdll")

11.2 The Splus objects
At present, the objects for communication with Splus that can be put in the DATA_SECTION
of the tpl file are

dll_init_int
dll_iinit_number
dll_iinit_vector
dll_init_matrix
dll_int
dll_number
dll_vector
dll_matrix

while in the PARAMETER_SECTION, they are

dll_init_number
dll_init_bounded_number
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dll_init_vector
dll_init_bounded_vector
dll_init_matrix
dll_number
dll_vector
dll_matrix

These objects act the same as the corresponding AD Model Builder objects without the
dll_ prefix. For initial parameters, the difference is that they are assumed to get their
initial values from Splus.

Note that by default, Splus stores elements of a matrix by columns, that is, contiguous
areas of memory run down the columns. AD Model Builder stores its elements by rows, so
that when a matrix objects is passed to it from Splus, it expects the object to be stored by
column and does a transpose operation on it. At the conclusion of the AD Model Builder
program, the object is passed back to Splus via the inverse operation. This process should
be transparent to the user.

Gauss, on the other hand, stores a matrix by rows. In addition, Gauss passes a string as
a char * rather than the char ** employed by Splus. Using the -gaussdll option ensures
that Gauss matrices and strings will be handled properly.

11.3 Debugging the dlls

Before you compile your program as a dll, it is easiest if you first compile it as a stand-alone
application and debug it. Then you can simply put the dll_ prefix before those objects you
wish to have passed to and from the calling program. Also is inconvenient to debug the dlls
from Splus directly. Errors in the code usually cause Splus to crash. Also, printing results to
the screen from a dll can be problematic if the calling program does not provide for it. To
alleviate this problem, it is possible to call the function in the dll from a C or C++ routine.
This enables the use of symbolic debuggers, etc., to debug the code, and enables screen I/O.
Here is C code that can load the dll and call the function:

#include <stdio.h>
#include <windows.h>

typedef __declspec(dllexport) void _export (*MYPROC)(int *_nvar,
double *_x,
double *_freturn,
char ** sp_options);

VOID main(int argc,char * argv[])
{
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HINSTANCE h;
MYPROC p;
/* Now invent the objects we need to pass to the DLL */
int nvar=50;
double x[50];
double freturn;
char * str;
int i;
char * str = " -nox -crit 1.e-7 ";
h=LoadLibrary("simpdll"); /* load the DLL */
if (h)
{
printf("loaded simdll.dll successfully\n");
/* get pointer to the function */
p=(MYPROC) GetProcAddress(h,"_simpdll");
if (p)
{
freturn=0.0;
for (i=0;i<nvar;i++)
x[i]=0.0;

p(&nvar,x,&freturn,&str);

printf("function value = %lf\n",&freturn);
for (i=0;i<nvar;i++)
printf("x[%d]= %lf\n",i,x[i]);

}
else
printf("Can’t find function simdll in DLL\n");

}
else
printf("Can’t load simdll.dll\n");

}

This code can be compiled with the command

gcc -otestsim.exe testsim.c

which will produce the program testsim.exe. Running this program will load the dll, find
the function in it, and call it. At the end, it will report the results obtained.
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11.4 Understanding what is being passed to the dll

The most difficult part of calling a C++ dll from some other type of application is under-
standing the correct formalism for passing different objects between the two. For example,
a string in Visual Basic may be a very different object from the simple char * (pointer to
char) of the C and C++ languages. If you get it wrong, then the program will usually crash
when the code in the dll tries to access the object. The easiest way to debug this is to have
the dll code print out the values of the passed objects. (However, keep in mind that simply
trying to access the values for printing may cause the program to crash.)

Consider the C++ for the example tpl code given above:

#include <admodel.h>

#include <simpdll.htp>

model_data::model_data(splus_args& ad_spa)
{
nvar.allocate(ad_spa.nvar,"nvar");

}

model_parameters::model_parameters(int sz,
int argc,
char * argv[],
splus_args& ad_spa) :
ad_comm(argc,argv), model_data(ad_spa) , function_minimizer(sz)
{
initializationfunction();
x.allocate(ad_spa.x,1,nvar,"x");
freturn.allocate(ad_spa.freturn,"freturn");
f.allocate("f");

}

void model_parameters::userfunction(void)
{
f=square(x(1)-1.0);
for (int i=1;i<nvar;i++)
{
f+=square(x(i+1)-x(i));

}
freturn=f;

}
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void model_parameters::preliminary_calculations(void){}

model_data::~model_data()
{}

model_parameters::~model_parameters()
{}

void model_parameters::report(void){}

void model_parameters::final_calcs(void){}

void model_parameters::set_runtime(void){}

#ifdef _BORLANDC_
extern unsigned _stklen=10000U;

#endif

#ifdef __ZTC__
extern unsigned int _stack=10000U;

#endif

long int arrmblsize=0;
extern "C" {

#if !defined(__delcspec)
# define __declspec(x)
#endif

#if !defined(__BORLANDC__)
# define _export
#endif

__declspec(dllexport) void _export simpdll(int *_nvar,
double *_x,
double *_freturn,
char ** sp_options)

{
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int argc=1;
try {
char **argv=parse_sp_options("simpdll",argc,*sp_options);
do_dll_housekeeping(argc,argv);
splus_args ad_spa(_nvar,_x,_freturn);
gradient_structure::set_NO_DERIVATIVES();
gradient_structure::set_YES_SAVE_VARIABLES_VALUES();

#if defined(__GNUDOS__) || defined(DOS386) || defined(__DPMI32__) || \
defined(__MSVC32__)
if (!arrmblsize) arrmblsize=150000;

#else
if (!arrmblsize) arrmblsize=25000;

#endif
model_parameters mp(arrmblsize,argc,argv,ad_spa);
mp.iprint=10;
mp.preliminary_calculations();
mp.computations(argc,argv);
cleanup_argv(argc,&argv);
ad_make_code_reentrant();

}
catch (spdll_exception spe){
if (ad_printf && spe.e) (*ad_printf) ("abnormal exit from newtest\n");

}
}
}

For now, we are only interested in the part of the code after the beginning of the function

__declspec(dllexport) void _export simpdll(int *_nvar,
double *_x,
double *_freturn,
char ** sp_options)

{
int argc=1;
try {
.....

Modify this code to:

__declspec(dllexport) void _export simpdll(int *_nvar,
double *_x,
double *_freturn,
char ** sp_options)
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{
cout << " nvar = " << *_nvar << endl;
return;
int argc=1;
try {
.....

If everything is OK, this will simply print out the value of nvar and return to the calling
program. Then the value of x can be printed out as well, with code like:

__declspec(dllexport) void _export simpdll(int *_nvar,
double *_x,
double *_freturn,
char ** sp_options)

{
cout << " nvar = " << *_nvar << endl;
cout << " x = " << endl;
for (int i=0;i<*_nvar;i++)
cout << _x[i] << endl;

cout << " freturn = " << *_freturn << endl;
cout << " sp_options = " << *sp_options << endl;
return;
int argc=1;
try {
.....

If you don’t have access to the screen, the above code can be modified to print to a file.

__declspec(dllexport) void _export simpdll(int *_nvar,
double *_x,
double *_freturn,
char ** sp_options)

{
ofstream ofs("logfile");
ofs << " nvar = " << *_nvar << endl;
ofs << " x = " << endl;
for (int i=0;i<*_nvar;i++)
ofs << _x[i] << endl;

ofs << " freturn = " << *_freturn << endl;
ofs << " sp_options = " << *sp_options << endl;
return;
int argc=1;
try {
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.....

After running the program, you should find the values of the objects printed into a file named
logfile.

Splus passes objects to the dll by address, that is, it finds the address in memory of the
object and passes that value. So the integer nvar is not passed itself, but the address is. In
C or C++, you get the address of an object with the & operator. Given the address of an
object, you access the object with the * operator. In the above code, _nvar is the address
of an integer passed by the calling program to the dll and *_nvar accesses the object. So,
the line of code

*_nvar=5;

will set the values of the integer to 5 back in the calling program. When Splus passes a
vector object, it passes the address of the first element in the vector. So, if the vector is a
vector of double precision numbers (an object of type double in C), it will pass a pointer to
double. So in the above code, _x is the address of the first element of the vector and *_x is
the first element, so

*_x=12.55;

will set the first element in the vector equal to 12.55. To access other elements of the vector,
use the [] operators.

x[0]=12.55; // same as *_x=12.55
x[4]=-2.5; // sets the 5 element equal to -2.5

11.5 Passing strings from Splus to a dll

A string in C is a pointer to an array of elements of type char. It might be logical to conclude
that Splus would pass the address of the first element of the array. This is not the case.
Splus passes the address of the object pointing to the first element of the array (a char **
in C). So in the above code, if you want to print the second element of the string, point
sp_options to the standard output device:

cout << (*sp_options)[1] << endl; // print the second element of the string

You must use the parentheses, because the [] operation has higher precedence than does
the * operation.

11.6 A mixture of two bivariate normal distributions
This is a more complicated example. Let xi be a collection of 2-dimensional vectors drawn at
random from a mixture of two bivariate normal distributions with means µi and covariance
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matrices Σi. The data to be analyzed are shown here. They consist of 500 points from the
mixture, with 25% in one component and 75% in the other component. Both samples have
positively correlated components, so they both lie near the line y = x. This makes them
difficult to separate. The means used for the simulations were

(0,0) (1,0)

while the covariance matrices used for the simulation were

1.77778 4.74074 1.77778 2.37037
4.74074 14.4198 2.37037 4.93827

The estimates for these parameters obtained by the model were

(0.026,0.059) (1.266,0.287)

1.42409 3.86336 1.66321 2.34985
3.86336 12.2286 2.34985 4.94363

The estimated proportions were

0.343 0.657

See Figure 11.1.
The minimization is carried out in three phases. For the first phase, only the proportions

of the mixture are estimated, with the parameters that determine the covariance matrices
and the means held fixed. For the second phase, the covariance matrices are estimated
as well, with the means held fixed. For the third and final phase, all the parameters are
estimated. The idea is that the user should start with some good estimates for the means.
Of course, the model could be run several times with different initial estimates and if different
solutions are obtained, then the one with the best fit would be chosen.

The initial values used for the means and standard deviations were

(-1,0) (2,0)

1 0 1 0
0 1 0 1

The initial values used for the proportions were

0.5 0.5

The log-likelihood function for the sample is

n∑
i=1

log
{
p1|Σ1|−1/2 exp

(
− 0.5(xi − µ1)

′Σ−11 (xi − µ1)
)

+ p2|Σ2|−1/2 exp
(
− 0.5(xi − µ2)

′Σ−12 (xi − µ2)
)}

(11.1)
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Figure 11.1
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The main technical difficulty in maximizing the log-likelihood function is parameterizing
the covariance matrices in such a way that they will be positive definite. This is done by
employing a “positivized” Choleksi decomposition. Σi as Σi = CiC

′
i + λI, where Ci is a

lower triangular matrix, λ > 0 is a “small” positive number, and I is the identity matrix.
The proportions in the mixture are parameterized by a bounded vector of parameters that
is normalized so that the components will sum to 1. The code for the example follows:

DATA_SECTION
dll_int nobs
dll_matrix obs(1,nobs,1,2)

PARAMETER_SECTION
dll_init_bounded_vector pcoff(1,2,.02,1.1);
dll_init_bounded_vector C1(1,3,-10.0,10.0,2)
dll_init_bounded_vector C2(1,3,-10.0,10.0,2)
dll_init_vector mu1(1,2,3)
dll_init_vector mu2(1,2,3)
dll_matrix S1(1,2,1,2)
dll_matrix S2(1,2,1,2)
dll_vector p(1,2)
objective_function_value f

PROCEDURE_SECTION
dvariable psum=sum(pcoff);
f+=100.*square(log(psum+1.e-20));
p=pcoff/(psum+1.e-20); // so p’s satisfy constraints
dvar_matrix tmp1(1,2,1,2);
dvar_matrix tmp2(1,2,1,2);
tmp1.initialize();
tmp2.initialize();
int ii=1;
int i=0;
for (i=1;i<=2;i++) { // fill lower triangle
for (int j=1;j<=i;j++) {
tmp1(i,j)=C1(ii);
tmp2(i,j)=C2(ii);
ii++;

}
}
S1=tmp1*trans(tmp1); // form S1 S2 from Choleski decomp.
S2=tmp2*trans(tmp2);
for (i=1;i<=2;i++) { // to make positive definite
S1(i,i)+=0.1;
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S2(i,i)+=0.1;
}
dvariable det1=sqrt(det(S1));
dvariable det2=sqrt(det(S2));
dvar_matrix S1inv=inv(S1);
dvar_matrix S2inv=inv(S2);
for (i=1;i<=nobs;i++) // add up minus log-likelihood
{
// add the 1.e-10 to avoid log(0) and for robustness
f-= log(1.e-10+p(1)/det1*exp(-.5*(obs(i)-mu1)*S1inv*(obs(i)-mu1))

+p(2)/det2*exp(-.5*(obs(i)-mu2)*S2inv*(obs(i)-mu2)));
}

RUNTIME_SECTION
maximum_function_evaluations 50,100,10000

REPORT_SECTION
report << "First mean = " << endl << mu1 << endl;
report << "First covariance matrix = " << endl<< S1 << endl;
report << "Second mean = " << endl << mu2 << endl;
report << "Second covariance matrix = " << endl << S2 << endl;

This example can be run by using the following Splus source code:

nobs<-scan("bimix.dat",n=1)
x<-matrix(scan("bimix.dat",skip=1),nrow=nobs,ncol=2,byrow=TRUE)
pcoff<-rep(.5,2)
C1<-rep(1,3)
C2<-rep(1,3)
C1[2]<-0
C2[2]<-0
p<-rep(0,2)
mu1<-rep(0,2)
mu1[1]<--1
mu2<-rep(0,2)
mu2[1]<-2
S1<-matrix(0,nrow=2,ncol=2)
S2<-matrix(0,nrow=2,ncol=2)
dll.load("bimix.dll",symbol="bimix")
ans<-.C("bimix",nobs=as.integer(nobs),as.double(x),pcoff=as.double(pcoff),
C1=as.double(C1),C2=as.double(C2),mu1=as.double(mu1),mu2=as.double(mu2),
S1=as.double(S1),S2=as.double(S2),p=as.double(p)," -sp -nohess ")

dll.unload("bimix.dll")
S1<-matrix(ans\$S1,nrow=2)
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S2<-matrix(ans\$S2,nrow=2)
mu1<-ans\$mu1
mu2<-ans\$mu2
p<-ans\$p
print ("Estimated proportions")
print(p)
print ("Estimated mean for component 1")
print(mu1)
print ("Estimated mean for component 2")
print(mu2)
print ("Estimated covariance matrix for component 1")
print(S1)
print ("Estimated covariance matrix for component 2")
print(S2)

This code only works under NT/95 for Version 4 Release 3. Assuming that you have put
the code where Splus can find it, you can run the example from Splus by typing

source("bimix.spl")

There is also a file, bimix.r, which will run the program under R. However, at present for
Windows, the R version will not print out any intermediate results. So, be patient and
the final estimates will appear when the minimization has converged. After the program
executes, the parameter estimates can be found in the Splus variables p, mu1, mu2, S1,
and S2.

11.7 Interpretation of the parameter estimates
If the user desires, they can remove the -nohess option and have the program compute
estimates of the variances of the parameter estimates.

index name value std.dev
1 pcoff 3.5511e-01 1.5693e+00
2 pcoff 6.7911e-01 2.9777e+00
3 C1 1.1507e+00 7.9990e-02
4 C1 3.3574e+00 2.8240e-01
5 C1 9.2537e-01 1.7504e-01
6 C2 1.2503e+00 7.7426e-02
7 C2 1.8795e+00 1.2641e-01
8 C2 1.1451e+00 8.3415e-02
9 mu 2.6366e-02 1.2791e-01
10 mu 5.9418e-02 3.4832e-01
11 mu 1.2627e+00 1.4717e-01
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12 mu 2.8665e-01 1.7818e-01
13 p 3.4336e-01 6.7238e-02
14 p 6.5664e-01 6.7238e-02

The program also reports the correlation matrix

index name value std.dev 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 pcoff 3.551e-01 1.569e+00 1.000

2 pcoff 6.791e-01 2.977e+00 0.997 1.000
3 C1 1.150e+00 7.999e-02 -0.039 -0.021 1.000
4 C1 3.357e+00 2.824e-01 -0.094 -0.052 0.736 1.000
5 C1 9.253e-01 1.750e-01 0.067 0.036 0.031 -0.394 1.000
6 C2 1.250e+00 7.742e-02 -0.071 -0.039 0.156 0.266 -0.070 1.000
7 C2 1.879e+00 1.264e-01 -0.016 -0.009 -0.066 -0.046 -0.087 0.613 1.000
8 C2 1.145e+00 8.341e-02 -0.072 -0.039 0.031 0.343 -0.308 0.138 -0.116 1.000
9 mu 2.636e-02 1.279e-01 -0.000 -0.000 0.147 -0.054 0.285 0.349 0.163 -0.212 1.000

10 mu 5.941e-02 3.483e-01 -0.045 -0.024 0.198 0.160 -0.012 0.411 0.245 -0.066 0.861 1.000
11 mu 1.262e+00 1.471e-01 0.115 0.063 -0.295 -0.521 0.257 -0.572 -0.170 -0.322 -0.225 -0.421 1.000
12 mu 2.866e-01 1.781e-01 0.063 0.034 -0.237 -0.247 0.071 -0.482 -0.265 0.003 -0.363 -0.460 0.803 1.000
13 p 3.433e-01 6.723e-02 0.148 0.081 -0.266 -0.636 0.450 -0.482 -0.111 -0.487 -0.001 -0.302 0.773 0.426 1.000
14 p 6.566e-01 6.723e-02 -0.148 -0.081 0.266 0.636 -0.450 0.482 0.111 0.487 0.001 0.302 -0.773 -0.426 -1.000 1.000
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Chapter 12

Command Line Options

AD Model Builder has a number of options that can be invoked at the command line. A list
of current options can be displayed by typing the name of the application followed by -?.

You will see a display like:

AD Model Builder Copyright (c) 2008 Regents of the University of California
USAGE--kalman options
where an option consists of -option_tag followed by arguments if necessary
-ainp NAME change default ascii input parameter file name to NAME
-binp NAME change default binary input parameter file name to NAME
-est only do the parameter estimation
-ind NAME change default input data file name to NAME
-lmn N use limited memory quasi newton -- keep N steps
-lprof perform profile likelihood calculations
-prsave save the independent variables from the profile calculations
-maxph N increase the maximum phase number to N
-mcdiag use diagonal covariance matrix for mcmc with diagonal values 1
-mcmc [N] perform markov chain monte carlo with N simulations
-mcmult N multiplier N for mcmc default
-mcr resume previous mcmc
-mcrb N modify the covariance matrix to reduce extremely high correlation
-mcnoscale don’t rescale step size for mcmc depending on acceptance rate
-mcprobe N use probing strategy for mcmc with factor N
-mcseed N seed for random number generator for markov chain monte carlo
-mccale N rescale step size for first N evaluations
-mcsave N save the parameters for every N’th simulation
-mceval Go through the saved mcmc values from a previous mcsave
-mcpin NAME Read the starting values for MCMC from the file NAME
-crit N set gradient magnitude convergence criterion to N
-iprint N print out function minimizer report every N iterations
-maxfn N set maximum number of function eval’s to N
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-rs if function minimizer can’t make progress rescale and try again
-nox don’t show vector and gradient values in function minimizer screen

report
-phase N start minimization in phase N
-simplex use simplex algorithm for minimization (new test version)
-sdonly do delta method for std dev estimates without redoing hessian
-ams N set arrmblsize to n (ARRAY_MEMBLOCK_SIZE)
-cbs N set CMPDIF_BUFFER_SIZE TO N
-mno N set the maximum number of independent variables to N
-gbs N set GRADSTACK_BUFFER_SIZE TO N
-mdl N set the maximum number of dvariables to N
-? or -help this message

The version of AD Model Builder is printed. This can be useful to determine the version
with which the application was compiled.

-aind NAME
By default, the program named xxxx(.exe) tries to read in its data from the file xxxx.dat.
This option changes the data file to NAME.

-ainp NAME
This option changes to NAME the file from which the initial parameter estimates are read.
The program expects the parameters to be in ascii format, with comment lines beginning
with #.

When a program is running, it produces parameter estimates in ascii format, in files
named xxxx.p01,. . ., xxxx.par. These files are in the proper format to be input back into
the model and permit restarts at any phase of the minimization.

-binp NAME
This option changes to NAME the file from which the initial parameter estimates are read.
The program expects the parameters to be in binary format.

When a program is running, it produces parameter estimates in binary format in files
named xxxx.b01,. . ., xxxx.bar. These files are in the proper format to be input back into
the model and permit restarts at any phase of the minimization.

Both ascii and binary forms of the parameter files are supplied, because they have
different advantages and disadvantages. ascii files can be easily examined and edited. Binary
files supply parameter values to the limit of machine precision in a compact format.

-lmn N
The limited memory Newton minimization option reduces the amount of memory necessary
for holding the approximate Hessian inverse. It is of use particularly in problems with a
large number of parameters (typically, > 1000). For many problems, it is not as efficient
per function evaluation as is the default quasi-Newton method, although this is not always
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the case. N is the number of pass steps of information kept for the quasi-Newton update.
Typically, a value in the range 5–20 is good.

-lprof
This option turns on the profile likelihood calculations. A variable for which profile likelihood
calculations are performed must have been declared with the likeprof_number in the tpl
file.

-prsave
This option causes the values of the independent variables for the profile likelihood points
to be saved in a file named xxx.pvl, where xxx is the name of the variable being profiled.
These values can be used later for starting the mcmc analysis at different values, which is
useful for testing the mixing of the chain with respect to that parameter.

-maxph N
You may want to add extra phases to the minimization—usually because the standard set
of phases has not converged. This will set the number of phases to N.

-mcmc [N]
This option turns on the the calculation of the Markov chain Monte Carlo routine. By
default, the model will recalculate the approximate Hessian, so you may want to use the
-nohess option if you don’t wish to recalculate the Hessian. It is your responsibility to
ensure that the Hessian data in the current directory are current. The mcmc routine will
perform N simulations.

-mcr
Restart (and continue) a previous Markov chain Monte Carlo routine. This will continue
from where the previous routine left off.

-mcrb N
See discussion of this option elsewhere in the manual.

-mcsave N
For the usual mcmc routine, the results from consecutive steps of the simulation are highly
correlated. If the parameters of interest are expensive to compute, it may be advantageous
to only compute every Nth one. This option saves the results so that they can be used in
subsequent calculations.

-mceval N
This option will use the previously saved results from mcmc to evaluate parameters of interest.
The function mceval_phase() can be useful here to only calculate the parameters during
this phase.
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-nox
This option suppresses the printing of the current x vector being sampled by the function
minimizer. Printing this out can be a significant overhead for models with a large number
of parameters. Also, it simply irritates some users.

-ams N set arrmblsize to n (ARRAY_MEMBLOCK_SIZE)
This option has the same effect as setting arrmblsize in the program code, but has the
advantage that it can be done at runtime.

-cbs N set CMPDIF_BUFFER_SIZE to n
This option has the same effect as the gradient_structure::set_CMPDIF_BUFFER_SIZE
function in the program code, but has the advantage that it can be done at runtime.

-gbs N set GRADSTACK_BUFFER_SIZE
This option has the same effect as the gradient_structure::set_GRADSTACK_BUFFER_SIZE
function in the program code, but has the advantage that it can be done at runtime. Also
note that the size is in bytes here, whereas for the included code, it is in chunks of about 36
bytes.
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Chapter 13

Writing Adjoint Code

13.1 The necessity for adjoint code

When you write code for variable objects in AD Model Builder, all the derivatives are
calculated for you in a transparent manner. To accomplish this, AD Model Builder must
save certain information for later use. We shall refer to this as derivative information. Each
arithmetic operation generates about 32 bytes of derivative information. If you have some
simple function that has 20 arithmetic operations, it will therefore generate 640 bytes of
derivative information every time it is called. The purpose of writing adjoint code is to
reduce the amount of derivative information that must be calculated. For a function that is
called many times, this can greatly reduce the amount of derivative information that must
be stored.

In this chapter, we investigate how to write and debug adjoint code. To begin, we
investigate how to write adjoint code for a simple function that takes 1–4 independent
variables and returns 1 dependent variable. The adjoint code for such functions is simpler to
write than that for a general function—such as the singular value decomposition of a matrix,
which we will consider later.

13.2 Writing adjoint code: a simple case

Consider a simple function f which takes 1 independent variable x and returns a dependent
variable y, i.e.,

y = f(x)

where f(x) = exp(−x2/2). The code for this example can be written like

dvariable errf(const prevariable& x)
{
return exp(-0.5*square(x));
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}

There are three arithmetic operations here: square, multiplication, and exponentiation, so
96 bytes of derivative information will be generated. (Actually, the return operation also
generates 32 bytes of derivative information, but we will ignore that for now.) A less efficient
way to write the code (but more useful for showing adjoint code for this simple example)
would be:

dvariable errf(const prevariable& x)
{
dvariable y;
y=exp(-0.5*square(x));
return y;

}

Here is the same code with the derivative calculated by the one line of adjoint code double
dfx=-value(x)*value(y);:

dvariable errf(const prevariable& x)
{
dvariable y;
value(y)=exp(-0.5*square(value(x)));
double dfx=-value(x)*value(y);
AD_SET_DERIVATIVES(y,x,dfx); // 1 dependent variable
return y;

}

So what is going on here? Consider the line

value(y)=exp(-0.5*square(value(x)));

The value function returns a constant type, that is, a double, that has the same value as the
corresponding dvariable or prevariable. In fact, it is the same object. That is, it shares the
same address, but the type has been changed to double. So, the above line of code assigns
the value exp(-0.5*square(value(x))) to y, but without generating any derivative code.
Similarly, since the calculations are made on value(x), these calculations will not generate
any derivative code. So, it is the responsibility of the programmer to calculate the derivative
code and store it where it can be used later. The line

double dfx=-value(x)*value(y);

calculates the derivative f ′(x) of y with respect to x and stores it with the line of code

AD_SET_DERIVATIVES(y,x,dfx);

This code will only generate 32 bytes of derivative information.

13-2



13.3 Debugging adjoint code: a simple case
The simplest way to debug the adjoint code is to put your new function into an AD Model
Builder template file and use the -dd 1 command line option to call the derivative checker.

DATA_SECTION
PARAMETER_SECTION
init_number x
!! x=2;
objective_function_value f;

PROCEDURE_SECTION
f=square(errf(x);

GLOBALS_SECTION
#include <admodel.h>
dvariable errf(const prevariable& x)
{
dvariable y;
value(y)=exp(-0.5*square(value(x)));
double dfx=-value(x)*value(y);
AD_SET_DERIVATIVES(y,x,dfx); // 1 dependent variable
return y;

}

13.4 Adjoint code for more than
one independent variable

The following code shows how to write the adjoint code for a function with two independent
variables:

DATA_SECTION
vector lengths(1,10)
vector ages(1,10)
!! lengths.fill_seqadd(1,1);
!! ages.fill_seqadd(1,1);
!! lengths=sqrt(lengths);

PARAMETER_SECTION
init_bounded_number linf(0,10)
init_bounded_number rho(0,1)
objective_function_value f;
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PROCEDURE_SECTION
for (int i=1;i<=10;i++)
f+=square(lengths(i)-vb_growth(linf,rho,ages(i)));

GLOBALS_SECTION
#include <admodel.h>

dvariable vb_growth(const prevariable& linf, const prevariable& rho,
double t)

{
double clinf=value(linf);
double crho=value(rho);
dvariable len;
value(len)=clinf*(1-pow(crho,t));
double dflinf=1-pow(crho,t);
double dfrho=-clinf*t*pow(crho,t-1);
AD_SET_DERIVATIVES2(len,rho,dfrho,linf,dflinf); // 3 dependent variable
return len;

}

This approach to writing adjoint code has been implemented for functions of up to four
independent variables.

DATA_SECTION
vector lengths(1,10)
vector ages(1,10)
!! lengths.fill_seqadd(1,1);
!! ages.fill_seqadd(1,1);
!! lengths=sqrt(lengths);

PARAMETER_SECTION
init_bounded_number linf(0,10)
init_bounded_number rho(0,1)
init_number t0
init_bounded_number gamma(.1,1.9)
objective_function_value f;

PROCEDURE_SECTION
for (int i=1;i<=10;i++)
f+=square(lengths(i)-vb_growth(linf,rho,t0,gamma,ages(i)));

GLOBALS_SECTION
#include <admodel.h>
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dvariable vb_growth(const prevariable& linf, const prevariable& rho,
const prevariable& t0, const prevariable gamma,double t)

{
double clinf=value(linf);
double ct0=value(t0);
double crho=value(rho);
double cgamma=value(gamma);
dvariable len;
value(len)=pow(clinf*(1-pow(crho,t-ct0)),cgamma);
double tmp=cgamma*pow(clinf*(1-pow(crho,t-ct0)),cgamma-1);
double dflinf=tmp*(1-pow(crho,t-ct0));
double dft0=tmp*(clinf*log(crho)*pow(crho,t-ct0));
double dfrho=-tmp*clinf*(t-ct0)*pow(crho,t-ct0-1);
double dfgamma=value(len)*log(clinf*(1-pow(crho,t-ct0)));
AD_SET_DERIVATIVES4(len,t0,dft0,rho,dfrho,linf,dflinf,gamma,dfgamma);

// 4 dependent variable
return len;

}

13.5 Structured calculation of derivatives in adjoint code

Until now, we have deliberately calculated the derivatives with respect to the independent
variables in an ad-hoc fashion. While this approach works for simple functions, it rapidly
becomes untenable when the function is more complicated. In the following example, we
have calculated the derivatives in a more structured fashion. Notice that to calculate the
derivatives, every line of code in the function is repeated in the opposite order (commented
out, of course) and the corresponding derivatives are calculated.

DATA_SECTION
vector lengths(1,10)
vector ages(1,10)
!! lengths.fill_seqadd(1,1);
!! ages.fill_seqadd(1,1);
!! lengths=sqrt(lengths);

PARAMETER_SECTION
init_bounded_number linf(0,10)
init_bounded_number rho(0,1)
init_number t0
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init_bounded_number gamma(.1,1.9)
objective_function_value f;

PROCEDURE_SECTION
for (int i=1;i<=10;i++)
f+=square(lengths(i)-vb_growth(linf,rho,t0,gamma,ages(i)));

GLOBALS_SECTION
#include <admodel.h>

dvariable vb_growth(const prevariable& linf, const prevariable& rho,
const prevariable& t0, const prevariable gamma,double t)

{
double clinf=value(linf);
double ct0=value(t0);
double crho=value(rho);
double cgamma=value(gamma);
dvariable len;
double u1=pow(crho,t-ct0);
double u2=clinf*(1-u1);
value(len)=pow(u2,cgamma);
double dflen=1.0;
//value(len)=pow(u2,cgamma);
double dfu2=dflen*cgamma*pow(u2,cgamma-1.0);
double dfgamma=dflen*value(len)*log(u2);
//double u2=clinf*(1-u1);
double dflinf=dfu2*(1-u1);
double dfu1=-dfu2*clinf;
//double u1=pow(crho,t-ct0);
double dfrho=dfu1*(t-ct0)*pow(crho,t-ct0-1.0);
double dft0=-dfu1*u1*log(crho);

AD_SET_DERIVATIVES4(len,t0,dft0,rho,dfrho,linf,dflinf,gamma,dfgamma);
// 4 dependent variable

return len;
}

13.6 General adjoint code
So far, the adjoint code has been for a simple function which has from 1 to 4 independent
variables and returns 1 dependent variable. Now we consider the general case where the
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function can take any number of dependent variables and return any number of dependent
variables, and these variables can be in the form of numbers, vectors, or matrices.

dvar_vector operator * (_CONST dvar_matrix& m,_CONST dvar_vector& x )
{
if (x.indexmin() != m.colmin() || x.indexmax() != m.colmax())
{
cerr << " Incompatible array bounds in dvar_vector operator * "

<< "(_CONST dvar_matrix& m,_CONST dvar_vector& x)\n";
ad_exit(21);

}

dvar_vector tmp(m.rowmin(),m.rowmax());
double sum;

for (int i=m.rowmin(); i<=m.rowmax(); i++)
{
sum=0.0;
for (int j=x.indexmin(); j<=x.indexmax(); j++)
{
sum+=(m.elem(i)).elem_value(j)*x.elem_value(j);

}
tmp.elem_value(i)=sum;

}
save_identifier_string("PLACE4");
x.save_dvar_vector_value();
x.save_dvar_vector_position();
save_identifier_string("PLACE3");
m.save_dvar_matrix_value();
m.save_dvar_matrix_position();
save_identifier_string("PLACE2");
tmp.save_dvar_vector_position();
save_identifier_string("PLACE1");

ADJOINT_CODE(dmdv_prod);
return(tmp);

}

To calculate the adjoint code, it will be necessary to have the values of the matrix m and the
vector x. This is accomplished with the instructions

x.save_dvar_vector_value();
m.save_dvar_matrix_value();
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Also, to calculate the derivatives, it will be necessary to know where the derivatives with
respect to the independent and dependent variables are located. This information is saved
with the instructions

x.save_dvar_vector_position();
m.save_dvar_matrix_position();
tmp.save_dvar_vector_position();

Finally, we need to save the name of the routine that calculates the adjoint code, so that it
can be called at the appropriate time. To write the code for the adjoint calculations, keep
in mind that everything must be recovered from the stack in the reverse order from which
it was put on the stack. This process can be a bit confusing and if you don’t do it properly,
the stack will become corrupted and nothing will work. To help diagnose problems, function
save_identifier_string can be used to put a string on the stack. This string value can be
checked in the adjoint code with the verify_identifier_string function. At least two of
these functions should be left in any adjoint code, so that stack integrity can be monitored
if problems show up later. For optimized code, they are not used, and so contribute almost
nothing to the overhead.

The adjoint code begins by reading the information that was saved on the stack. An ob-
ject of type dvar_vector_position contains both the size and address information associ-
ated with a dvar_vector—which are needed to recover or store derivative values, or to build a
dvector with the same shape as the �dvar_vector. The function restore_dvar_vector_der-
ivatives gets the values of the derivatives with respect to the dependent variables, so they
can be used in the adjoint code. The functions

dfx.save_dvector_derivatives(x_pos);
dfm.save_dmatrix_derivatives(m_pos);

use the position information to save the derivatives with respect to the independent variables
in the appropriate places.

void dmdv_prod(void)
{
verify_identifier_string("PLACE1");
dvar_vector_position tmp_pos=restore_dvar_vector_position();
verify_identifier_string("PLACE2");
dvar_matrix_position m_pos=restore_dvar_matrix_position();
dmatrix m=restore_dvar_matrix_value(m_pos);
verify_identifier_string("PLACE3");
dvar_vector_position x_pos=restore_dvar_vector_position();
dvector x=restore_dvar_vector_value(x_pos);
verify_identifier_string("PLACE4");
dvector dftmp=restore_dvar_vector_derivatives(tmp_pos);
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dmatrix dfm(m_pos);
dvector dfx(x_pos.indexmin(),x_pos.indexmax());
dfm.initialize();
dfx.initialize();

double dfsum;
for (int i=m.rowmax(); i>=m.rowmin(); i--)
{
// tmp.elem_value(i)=sum;
dfsum=dftmp.elem(i);
for (int j=x.indexmax(); j>=x.indexmin(); j--)
{
//sum+=(m.elem(i)).elem_value(j)*x.elem_value(j);
dfm.elem(i,j)+=dfsum*x.elem(j);
dfx.elem(j)+=dfsum*m.elem(i,j);

}
//sum=0.0;
dfsum=0.0;

}
dfx.save_dvector_derivatives(x_pos);
dfm.save_dmatrix_derivatives(m_pos);

}
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Chapter 14

Truncated Regression

14.1 Truncated linear regression

The linear regression model we consider here has the form

Yi =
m∑
j=1

ajxij + εi

where the Yi for i = 1, . . . , n are the n observations and the aj are m parameters to be
estimated. The εi are assumed to be normally distributed random variables with mean 0
and variance v.

Let ri = Yi −
∑m

j=1 ajxij. The log-likelihood function for the standard regression model
is given by

−.5n log(v)−
n∑
i=1

r2i
2v

Now assume that we only consider the Yi for Yi ≥ 0, i.e., the left truncated situation. The
probability that Yi ≥ 0 is equal to the probability that εI > −

∑m
j=1 ajxij. This is equal to

1− Φ(−
∑m

j=1 ajxij/v), where

Φ(u) =
1√
2π

∫ u

−∞
exp

(
−t2/2

)
dt

For this truncated regression, the log-likelihood function has the logarithm of this quantity
subtracted from it, so it becomes

−.5n log(v)−
n∑
i=1

r2i
2v
− log

(
1− Φ

(
−

m∑
j=1

ajxij/v

))
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If instead we consider the right truncated case, where only the Yi < 0 are considered, the
log-likelihood function becomes

−.5n log(v)−
n∑
i=1

r2i
2v
− log

(
Φ

(
−

m∑
j=1

ajxij/v

))

To parameterize v, we introduce a new parameter a satisfying the condition v = av̂,
where v̂ = 1

n

∑n
i=1 r

2
i is the usual maximum likelihood estimate for v. This leads to more

numerically stable behavior. In terms of a, the expression for the log-likelihood simplifies to

−.5n log(a)− .5n log(v̂)− n

2a
− log

(
1− Φ

(
−

m∑
j=1

ajxij/(av̂)

))

14.2 The AD Model Builder truncated
regression program

Here are the contents of the file truncreg.tpl:

DATA_SECTION
init_int nobs
init_int m
init_int trunc_flag
init_matrix data(1,nobs,1,m+1)
vector Y(1,nobs)
matrix X(1,nobs,1,m)
LOC_CALCS
Y=column(data,1);
for (int i=1;i<=nobs;i++)
{
X(i)=data(i)(2,m+1).shift(1);

}
PARAMETER_SECTION
sdreport_number sigma
number vhat
init_bounded_number log_a(-5.0,5.0);
sdreport_number a
init_vector u(1,m)
objective_function_value f

PROCEDURE_SECTION
a=exp(log_a);
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dvar_vector pred=X*u;
dvar_vector res=Y-pred;
dvariable r2=norm2(res);
vhat=r2/nobs;
dvariable v=a*vhat;
sigma=sqrt(v);

dvar_vector spred=pred/sigma;
f=0.0;
switch (trunc_flag)
{
case -1: // left_truncated
{
for (int i=1;i<=nobs;i++)
{
f+=log(1.00001-cumd_norm(-spred(i)));

}
}
break;

case 1: // right truncated
{
for (int i=1;i<=nobs;i++)
{
f+=log(0.99999*cumd_norm(-spred(i)));

}
}
break;

case 0: // no truncation
break;

default:
cerr << "Illegal value for truncation flag" << endl;
ad_exit(1);

}
f+=0.5*nobs*log(v)+0.5*r2/v;

REPORT_SECTION
report << "#u " << endl << u << endl;
report << "#sigma " << endl << sigma << endl;
report << "#a " << endl << a << endl;
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report << "#vhat " << endl << vhat << endl;
report << "#shat " << endl << sqrt(vhat) << endl;
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Chapter 15

All the Functions in AD Model Builder

This chapter attempts to list and document all the functions available in AD Model Builder.
It will always be incomplete, since functions are continually being added. If you are aware
of a function that is not documented please, contact me at otter@otter-rsch.com and let me
know.

15.1 Naming conventions for documenting functions

Wherever applicable, the name function has been supplied for constant and variable objects
(such as double and dvariable). Instead of repeating the description for both kinds of
objects, the convention of referring to both types as “number,” “vector,” “matrix,” etc., will
be observed.

15.2 Mathematical functions

The following functions have been included in autodif, by overloading the C++ library
functions or adding additional functions where necessary:

acos atan cos cosh cube exp (mfexp) fabs gammln (sfabs) log log_comb
log10 log_density_poisson pow square sqrt sin sinh tan tanh

These functions can be used on numbers or vector_objects in the form

number = function(number);
vector_object = function(vector_object);

When operating on vector_objects, the functions operate elemen-by-element, so if y is
a dvector whose elements are (y1, . . . , yn), then exp(y) is a dvector whose elements are
(exp(y1), . . . , exp(yn)).
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The functions min and max, when applied to a vector_object, return a number that is
equal to the minimum or maximum element of the vector_object.

The function gammln is the logarithm of the gamma function.
The function log_comb(n,k) is the logarithm of the function, the combination of n things

taken k at a time. It is defined via the logarithm of the gamma function for non-integer values,
and is differentiable.

15.3 Operations on arrays

15.3.1 Element-wise operations

There are several operations familiar to users of spreadsheets that do not appear as often in
classical mathematical calculations. For example, spreadsheet users often wish to multiply
one column in a spreadsheet by the corresponding elements of another column. Spreadsheet
users might find it much more natural to define the product of matrices as an element-wise
operation, such as

zij = xij ∗ yij

The “classical” mathematical definition for the matrix product has been assigned to the
overloaded operator ‘*,’ so large mathematical formulas involving vector and matrix opera-
tions can be written in a concise notation. Typically, spreadsheet-type calculations are not
so complicated and do not suffer so much from being forced to adopt a “function style” of
notation.

Since addition and subtraction are already defined in an element-wise manner, it is only
necessary to define element-wise operations for multiplication and division. We have named
these functions elem_prod and elem_div.

vector_object = elem_prod(vector_object,vector_object) // element-wise multiply
zi = xi ∗ yi

vector_object = elem_div(vector_object,vector_object) // element-wise divide
zi = xi/yi

matrix_object = elem_prod(matrix_object,matrix_object) // element-wise multiply
zij = xij ∗ yij

matrix_object = elem_div(matrix_object,matrix_object) // element-wise divide
zij = xij/yij
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15.4 The identity matrix function identity_matrix

matrix_object = identity_matrix(int min,int max)
creates a square identity matrix with minimum valid index min and maximum valid index
max.

15.5 Probability densities and related functions:
poisson negative binomial cauchy

number log_density_cauchy(number x);
returns the logarithm of the Cauchy density function at x.

number log_density_poisson(number x,number mu);
returns the logarithm of the Poisson density function at x with mean mu.

number log_negbinomial_density(number x,number mu,number tau);
returns the logarithm of the negative binomial density function with mean mu and over-
dispersion (variance/mean) tau. tau must be greater than 1.

15.6 The operations det inv norm norm2 min max sum

The determinant of a matrix object

(The matrix must be square, that is, the number of rows must equal the number of columns.)

matrix_object = det(matrix_object)

The inverse of a matrix object

(The matrix must be square, that is, the number of rows must equal the number of columns.)

matrix_object = inv(matrix_object)

The norm of a vector object

number = norm(vector_object)
z =

√∑
i x

2
i

The norm squared of a vector object

number = norm2(vector_object)
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z =
∑

i x
2
i

The norm of a matrix object

number = norm(matrix_object)

z =
√∑

ij x
2
ij

The norm squared of a matrix object

number = norm2(matrix_object)
zij = xji

The transpose of a matrix object

matrix_object = trans(matrix_object)
z =

∑
ij x

2
ij

The sum over the elements of a vector object

number = sum(vector_object)
z =

∑
i xi

The row sums of a matrix object

vector = rowsum(matrix_object)
zi =

∑
j xij

The column sums of a matrix object

vector = colsum(matrix_object)
zj =

∑
i xij

The minimum element of a vector object

number = min(vector_object)

The maximum element of a vector object

number = max(vector_object)
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15.7 Eigenvalues and eigenvectors of a symmetric matrix
While we have included eigenvalue and eigenvector routines for both constant and variable
matrix objects, you should be aware that, in general, the eigenvectors and eigenvalues are
not differentiable functions of the variables determining the matrix.

matrix_object = eigenvectors(matrix_object)
returns in a matrix the eigenvectors of a symmetric matrix.

It is the user’s responsibility to ensure that the matrix is actually symmetric. The routine
symmetrizes the matrix, so the eigenvectors returned are actually those for the symmetrized
matrix. The eigenvectors are located in the columns of the matrix. The ith eigenvalue
returned by the function eigenvalues corresponds to the ith eigenvector returned by the
function eigenvectors.

15.8 The Choleski decomposition of a
positive definite symmetric matrix

For a positive definite symmetric matrix S, the Choleski decomposition of S is a lower
triangular matrix T satisfying the relationship S=T*trans(T). If S is a (positive definite
symmetric) matrix object and T is a matrix object, the line of code

T=choleski_decomp(S);

will calculate the Choleski decomposition of S and put it into T.

15.9 Solving a system of linear equations
If y is a vector and M is an invertible matrix, then finding a vector x such that

x=inv(M)*y

will be referred to as “solving the system of linear equations determined by y and M.” Of
course, it is possible to use the inv function to accomplish this task, but it is much more
efficient to use the solve function:

vector x=solve(M,y); // x will satisfy x=inv(M)*y;

It turns out that it is a simple matter to calculate the determinant of the matrix M while
solving the system of linear equations. Since this is useful in multivariate analysis, we
have also included a function that returns the determinant when the system of equations is
solved. To avoid floating point overflow, or underflow when working with large matrices, the
logarithm of the absolute value of the determinant, together with the sign of the determinant,
are returned. The constant form of the solve function is
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double ln_det;
double sign;
dvector x=solve(M,y,ln_det,sign);

while the variable form is

dvariable ln_det;
dvariable sign;
dvar_vector x=solve(M,y,ln_det,sign);

The solve function is useful for calculating the log-likelihood function for a multivariate
normal distribution. Such a log-likelihood function involves a calculation similar to

l = -.5*log(det(S)) -.5*y*inv(S)*y

where S is a matrix object and y is a vector object. It is much more efficient to carry out
this calculation using the solve function. The following code illustrates the calculations for
variable objects:

dvariable ln_det;
dvariable sign;
dvariable l;
dvar_vector tmp=solve(M,y,ln_det,sign);
l=-.5*ln_det-y*tmp;

15.10 Methods for filling arrays and matrices
While it is always possible to fill vectors and matrices by using loops and filling them element
by element, this is tedious and prone to error. To simplify this task, a selection of methods for
filling vectors and matrices with either random numbers, or a specified sequence of numbers,
is available. There are also methods for filling row and columns of matrices with vectors. In
this section, the symbol vector can refer to either a dvector or a dvar_vector, while the
symbol matrix can refer to either a dmatrix or a dvar_matrix.

void vector::fill("{m,n,...,}")
fills a vector with a sequence of the form n, m, . . . The number of elements in the string
must match the size of the vector.

void vector::fill_seqadd(double& base, double& offset)
fills a vector with a sequence of the form base, base+offset, base+2*offset,. . .

For example, if v is a dvector created by the statement

dvector v(0,4);

then the statement
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v.fill_seqadd(-1,.5);

will fill v with the numbers (−1.0,−0.5, 0.0, 0.5, 1.0).

void matrix::rowfill_seqadd(int& i,double& base, double& offset)
fills row i of a matrix with a sequence of the form base, base+offset, base+2*offset,. . .

void matrix::colfill_seqadd(int& j,double& base, double& offset)
fills column j of a matrix with a sequence of the form base, base+offset, base+2*offset,. . .

void matrix::colfill(int& j,vector&)
fills the jth column of a matrix with a vector.

void matrix::rowfill(int& i,vector&)
fills the ith row of a matrix with a vector.

15.11 Methods for filling arrays and matrices
with random numbers

This method of filling containers with random numbers is becoming obsolete. The preferred
method is to use the random_number_generator class. See Section 15.17 for instructions
on using this class. In this section, a uniformly distributed random number is assumed to
have a uniform distribution on [0, 1]. A normally distributed random number is assumed to
have mean 0 and variance 1. A binomially distributed random number is assumed to have a
parameter p, where 1 is returned with probability p, and 0 is returned with probability 1−p.
A multinomially distributed random variable is assumed to have a vector of parameters P ,
where i is returned with probability pi. If the components of P do not sum to 1, the vector
will be normalized so that the components do sum to 1.

void vector::fill_randu(long int& n)
fills a vector with a sequence of uniformly distributed random numbers. The long int n is a
seed for the random number generator. Changing n will produce a different sequence of ran-
dom numbers. This function is now obsolete. You should use the random_number_generator
class to generate random numbers.

void matrix::colfill_randu(int& j,long int& n)
fills column j of a matrix with a sequence of uniformly distributed random numbers The
long int n is a seed for the random number generator. Changing n will produce a different
sequence of random numbers.

void matrix::rowfill_randu(int& i,long int& n)
fills row i of a matrix with a sequence of uniformly distributed random numbers.
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void vector::fill_randbi(long int& n, double& p)
fills a vector with a sequence of random numbers from a binomial distribution.

void vector::fill_randn(long int& n)
fills a vector with a sequence of normally distributed random numbers. This function is now
obsolete. You should use the random_number_generator class to generate random numbers.

void matrix::colfill_randn(int& j,long int& n)
fills column j of a matrix with a sequence of normally distributed random numbers.

void matrix::rowfill_randn(int& i,long int& n)
fills row i of a matrix with a sequence of normally distributed random numbers.

void vector::fill_multinomial(long int& n, dvector& p)
fills a vector with a sequence random numbers from a multinomial distribution. The param-
eter p is a dvector such that p[i] is the probability of returning i. The elements of p must
sum to 1.

15.12 Methods for obtaining shape information
from containers

When this code was first written, the maximum dimension of arrays was about four. At this
level, it perhaps make sense to think of a 1-dimensional array as a vector, a 2-dimensional
array as a matrix, etc. For a matrix, one thinks in terms of rows and columns. However,
with the adoption of ragged container objects up to eight dimensions (at present), a more
generic method of obtaining shape information of these objects was called for.

If v is a vector object, then

int v.indexmin()
int v.indexmax()

return the minimum and maximum valid indices for v. If m is a matrix object, then

int v.rowmin()
int v.rowmax()
int v.colmin()
int v.colmax()

return the minimum and maximum valid row and column indices for m. These functions
make sense for a matrix where every row is a vector with the same minimum and maximum
valid indices. For a ragged matrix, this is no longer the case, so the rowmin() and rowmax()
functions don’t make sense. To deal with a ragged matrix, one may need to calculate the
minimum and maximum valid indices for each row of the ragged matrix. To facilitate this
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approach, the functions indexmin and indexmax have been defined for all container classes.
So, for example, if w is a 6-dimensional array, then

int w.indexmin()
int w.indexmax()

return the minimum and maximum valid indices for the first index of w. For a matrix object
m, m.indexmin() and m.colmin() are the same and as long as m is not ragged,

m(m.indexmin()).indexmin()

is the same as

m.colmin()

and

m(m.indexmin()).indexmax()

is the same as

m.colmax()

15.13 Methods for extracting from arrays and matrices

vector column(matrix& M,int& j)
extracts the jth column from a matrix and puts it into a vector.

vector extract_row(matrix& M,int& i)
extracts a row from a matrix and puts it into a vector. Note that the operation M(i) has
the same effect.

vector extract_diagonal(matrix& M)
extracts the diagonal elements from a matrix and puts them into a vector.

The function call operator () has been overloaded in two ways to provide for the extrac-
tion of a subvector.

vector(ivector&)

An ivector object is used to specify the elements of the vector to be chosen. If u and v are
dvectors and i is an ivector, the construction

dvector u = v(i);

will extract the members of v indexed by i and put them in the dvector u. The size of
u is equal to the size of i. The dvector u will have minimum valid index and maximum
valid index equal to the minimum valid index and maximum valid index of i. The size of i
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can be larger than the size of v, in which case some elements of v must be repeated. The
elements of the ivector i must lie in the valid index range for v.

If v is a dvector and i1 and i2 are two integers,

u(i1,i2)

is a dvector, which is a subvector of v (provided, of course, that i1 and i2 are valid indices
for v). Subvectors can appear on both the left and right hand side of an assignment:

dvector u(1,20);
dvector v(1,19);
v = 2.0; // assigns the value 2 to all elements of v
u(1,19) = v; // assigns the value 2 to elements 1 through 19 of u

In the above example, suppose that we wanted to assign the vector v to elements 2 through 20
of the vector u. To do this, we must first ensure that they have the same valid index ranges.
The operators ++ and -- increment and decrement the index ranges by 1.

dvector u(1,20);
dvector w(1,19);
dvector v(1,19);

v = 2.0; // assigns the value 2 to all elements of v

--u(2,20) = v; // assigns the value 2 to elements 2 through 20 of u

u(2,20) = ++v; // assigns the value 2 to elements 2 through 20 of u
// probably not what you want

w=v; // error different index ranges

It is important to realize that from the point of view of the vector u, both of the above
assignments have the same effect. It will have elements 2 through 20 set equal to 2. The
difference is in the side effects on the vector v. The operation ++v will increase the minimum
and maximum valid index range of the vector v by 1. This increase is permanent. On the
other hand, the operation --u(2,20) decrements the valid index bounds of the subvector
u(2,20). This is a distinct object from the vector u, although both objects share a common
area for their components. Thus, the valid index bounds of u are not affected by this process.
The use of subvectors, along with increment and decrement operations, can be used to remove
loops from the code. Note that

dvector x(1,n)
dvector y(1,n)
dvector z(1,n)
for (int i=2;i<=n;i++)
{
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x(i)=y(i-1)*z(i-1);
}

can be written as

dvector x(1,n)
dvector y(1,n)
dvector z(1,n)
x(2,n)=++elem_prod(y(1,n-1),z(1,n-1)); // elem_prod is element-wise

// multiplication of vectors

The shift function can be used to set the minimum (and maximum) valid index for a
vector.

dvector u(10,100); // minimum valid index is 10
// maximum valid index is 100

u.shift(25); // minimum valid index is 25
// maximum valid index is 115

In particular, the operators -- and ++ are just convenient shorthand for using the shift
function to change the minimum valid index by 1.

dvector u(10,100); // minimum valid index is 10
// maximum valid index is 100

u.shift(u.indexmin()-1); // minimum valid index is 9
--u; // same result as u.shift(u.indexmin()-1)
u.shift(u.indexmin()+1); // minimum valid index is 11
++u; // same result as u.shift(u.indexmin()+1)

15.14 Accessing subobjects of higher-dimensional arrays
The () operator cannot be used to access subobjects of arrays of dimension 2 or greater,
because this operator has already been defined to do something else. For example, for a
dmatrix M, M(1,2) is an element of M. To access subobjects of higher-dimensional arrays,
use the sub member function. If M is a matrix object, then M.sub(2,6) is a matrix object
with minimum valid index 2 and maximum valid index 6 (provided, of course, that the
minimum valid index for M is less than or equal to 2 and the maximum valid index is greater
than or equal to 6). If T is a 3-dimensional object, then T.sub(2,5) is a 3-dimensional
object, provided that the index bounds are legal.

15.15 Sorting vectors and matrices
While sorting is not strictly a part of methods for calculating the derivatives of differen-
tiable functions (it is a highly non-differentiable operation), it is so useful for pre and post-
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processing data that we have included some functions for sorting dvector and dmatrix
objects. If v is a dvector the statement

dvector w=sort(v);

will sort the elements of v in ascending order and put them in the dvector object w. The
minimum and maximum valid indices of w will be the same as those of v. If desired, an
index table for the sort can be constructed by passing an ivector along with the dvector.
This index table can be used to sort other vectors in the same order as the original vector
by using the () operator.

dvector u={4,2,1};
dvector v={1,6,5}
ivector ind(1,3);
dvector w=sort(u,ind); // ind will contain an index table for the sort
// Now w=(1,2,4) and ind=(3,2,1)
dvector ww=v(ind); // This is the use of the ( ) operator for subset

// selection.
// Now ww=(5,6,1)

The sort function for a dmatrix object sorts the columns of the dmatrix into ascending
order, using the column specified to do the sorting. For example,

dmatrix MM = sort(M,3);

will put the sorted matrix into MM, and the third column of MM will be sorted in ascending
order.

15.16 Statistical functions

cumd_norm
inv_cumd_norm
cumd_cauchy
inv_cumd_cauchy

These are the cumulative distribution function and the inverse cumulative distribution func-
tion for the normal and Cauchy distributions.

15.17 The random number generator class

The random number generator class is used to manage the generation of random numbers.
A random number generator object is created with the declaration

random_number_generator r(n);
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where n is the seed that initializes the random number generator. Any number of random
number generators may be declared. This class can be used to manage random number
generation with the following functions:

randpoisson(lambda,r); // generate a Poisson with mean lambda
randnegbinomiual(mu,tau,r); // generate a negative binomial with mean mu

// and over-dispersion tau (tau>1)
randn(r); // generate a normally distributed random number
randu(r); // generate a uniformly distributed random number
v.fill_randu(r) // fill a vector v
v.fill_randn(r) // fill a vector v
v.fill_randpoisson(mu,r) // fill a vector v with Poisson distributed

// random variables with mean mu
v.fill_rand(mu,tau,r) // fill a vector v with negative binomial distributed

// random variables with mean mu and over-dispersion var/mu = tau
v.fill_multinomial(r,p) // fill a vector v

// p is a vector of probabilities
m.fill_randu(r) // fill a matrix m
m.fill_randn(r) // fill matrix m
m.fill_randpoisson(lambda,r) // fill a matrix m

The incomplete beta function Ix(a, b) is defined by

Ix(a, b) =
1

B(a, b)

∫ x

0

ta−1(1− t)b−1 dt (a, b, > 0) (15.1)

This is also the cumulative distribution function for the beta family of probability distribu-
tions. The function is named betai and is invoked by

\\ .....
dvariable p=betai(a,b,x);

15.18 The adstring class operations
The adstring class was defined before there was a standardized C++ string class. It does
not contain all the features that a full string class should have. It is, however, easier to use
in many cases than the standard C string operations.

adstring s;
adstring t;
s="first_part";
t="second_part";
adstring u = s + " ___ " + t;
cout << u << endl;
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should print out

first_part ___ second_part

The operation + concatenates two adstring objects. It can be used to concatenate C-style
strings by first turning them into adstring objects, as in

adstring u = adstring("xxx") + adstring("yyy");

One can also append to a string with the += operator, as in

adstring u = "abc";
u += v;
adstring w = "abc";
w += ’f’;

which adds the adstring object v to u and the character ‘f’ to w. It is also possible to cast
an adstring object to a C-like char * string, as in

adstring u = "abc"
char * c = (char*)(u);

Then it may be used as you would use a C-like string.

15.19 Miscellaneous functions

posfun(x,eps,pen)
The posfun function constrains the argument x to be positive. For x > eps, it is the identity
function.

The current source code for the posfun function appears below:

dvariable posfun(const dvariable&x,const double eps,dvariable& pen)
{
if (x>=eps) {
return x;

} else {
pen+=.01*square(x-eps);
return eps/(2-x/eps);

}
}

mfexp(_CONST prevariable& x)
The mfexp function is the exponential function that is modified for large values of its argu-
ment, to prevent floating point overflows.

The current source code for the mfexp function appears below:
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dvariable mfexp(_CONST prevariable& x)
{
double b=60;
if (x<b)
{
return exp(x);

}
else
{
return exp(b)*(1.+2.*(x-b))/(1.+x-b);

}
}
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Chapter 16

Miscellaneous and Advanced Features
of AD Model Builder

16.1 Using strings and labels in the tpl file
For purposes of this manual, a “label” is a string that does not have any blanks in it. Such
strings can be read in from the data file using the init_adstring declaration, as in

DATA_SECTION
init_adstring s

The dat file should contain something like

# label to be read in
my_model_data

When the program runs, the adstring object s should contain the string

my_model_data

White space at the beginning is ignored and following white space terminates the input of
the object.

Discussions of the various operations on adstring class members are found elsewhere in
the manual.

16.2 Using other class libraries in
AD Model Builder programs

A useful feature of C++ is its open nature. This means that the user can combine several class
libraries into one program. In general, this simply involves including the necessary header
files in the program and then declaring the appropriate class instances in the program.
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Instances of external classes can be declared in an AD Model Builder program in several
ways. They can always be declared in the procedure or report section of the program as
local objects. It is sometimes desired to include instances of external classes in a more formal
way into an AD Model Builder program. This section describes how to include them into
the DATA_SECTION or PARAMETER_SECTION. After that, they can be referred to as though
they were part of the AD Model Builder code (except for the technicalities to be discussed
below).

AD Model Builder employs a strategy of late initialization of class members. The reason
for this is to allow time for the user to carry out any calculations that may be necessary
for determining parameter values, etc., that are used in the initialization of the object. Be-
cause of the nature of constructors in C++, this means that every object declared in the
DATA_SECTION or the PARAMETER_SECTION must have a default constructor that takes no
arguments. The actual allocation of the object is carried out by a class member function
named allocate, which takes any desired arguments. Since external classes will not gener-
ally satisfy these requirements, a different strategy is employed for these classes. A pointer
to the object is included in the appropriate AD Model Builder class. This pointer has the
prefix pad_ inserted before the name of the object. The pointer to myobj would have the
form pad_myobj.

!!CLASSfooclass myobj( ...)

The user can refer to the object in the code simply by using its name.

16.3 Using control files for bounded parameters

Bounded parameters defined in the procedure section take the following format:

init_bounded_number a(lb,ub,i_phz);

where lb is the lower bound, ub is the upper bound and i_phz is and integer representing the
phase of estimation. There is also an option to pass a vector containing 3 elements set the
lower and upper bounds and the phase of estimation. This is often desirable as this vector
can be read in from the data file and does not require recompiling of the code to change the
parameter bounds or the phase of estimation.

init_bounded_number a(luphz_vector);

This has also been implemented for the init_bounded_number_vector, where a matrix
read in from the data section is used to set the lower and upper bounds of each element and
phase of estimation. The following is a simple example implementing these new features.

DATA_SECTION
init_int nobs;
init_vector y(1,nobs);
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init_vector x(1,nobs);

// Controls for parameters.
init_vector a_lup(1,3);
init_vector b_lup(1,3);
init_vector sig_lup(1,3);

init_matrix theta_lup(1,3,1,3);
PARAMETER_SECTION

init_bounded_number a(a_lup);
init_bounded_number b(b_lup);
init_bounded_number sig(sig_lup);

init_bounded_number_vector theta(theta_lup);
objective_function_value f;

vector y_hat(1,nobs);
vector y2_hat(1,nobs);

INITIALIZATION_SECTION
sig 1.0;

PROCEDURE_SECTION

y_hat = a + b * x;
y2_hat = theta(1) + theta(2)*x;
f = dnorm(y - y_hat, sig);
f += dnorm(y-y2_hat,theta(3));

And the input data file is here:

# number of observations
10

# observed Y values
1.4 4.7 5.1 8.3 9.0 14.5 14.0 13.4 19.2 18

# observed x values
-1 0 1 2 3 4 5 6 7 8

#a_lup
-5 5 1
#b_lup
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-10 10 1
#sig_lup
0.01 3.0 2
#theta_lup
# lower bound, upper bound, phase
-5 5 1
-10 10 1
0.01 5.0 2
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Appendix A

The Regression Function

The robust_regression function calculates the log-likelihood function for the standard
statistical model of independent normally distributed errors, with mean 0 and equal variance.
The code is written in terms of autodif objects, such as dvariable and dvar_vector. They
are described in the autodif user’s manual.

dvariable regression(const dvector& obs,const dvar_vector& pred)
{
double nobs=double(size_count(obs)); // get the number of

// observations
dvariable vhat=norm2(obs-pred); // sum of squared deviations
vhat/=nobs; //mean of squared deviations
return (.5*nobs*log(vhat)); //return log-likelihood value

}

A-1



Appendix B

AD Model Builder Types

The effect of a declaration depends on whether or not it occurs in the DATA_SECTION or in
the PARAMETER_SECTION. Objects declared in the DATA_SECTION are constant, that is, like
data. Objects declared in the PARAMETER_SECTION are variable, that is, like the parameters
of the model that are to be estimated. Any objects that depend on variable objects must
themselves be variables objects, that is, they are declared in the PARAMETER_SECTION and
not in the DATA_SECTION.

In the DATA_SECTION, the prefix init_ indicates that the object is to be read in from
the data file. In the PARAMETER_SECTION, the prefix indicates that the object is an initial
parameter whose value will be used to calculate the value of other (non-initial) parameters.
In the PARAMETER_SECTION, initial parameters will either have their values read in from a
parameter file or will be initialized with their default initial values. The actual default values
used can be modified in the INITIALIZATION_SECTION. From a mathematical point of view,
objects declared with the init_ prefix are independent variables that are used to calculate
the objective function being minimized.

The prefixes bounded_ and dev_ can only be used in the PARAMETER_SECTION. The prefix
bounded_ restricts the numerical values that an object can take on to lie in a specified
bounded interval. The prefix dev_ can only be applied to the declaration of vector objects.
It has the effect of restricting the individual components of the vector object so that they
sum to zero.

The prefix sdreport_ can only be used in the PARAMETER_SECTION. An object declared
with this prefix will appear in the covariance matrix report. This provides a convenient
method for obtaining estimates for the variance of any parameter that may be of interest.
Note that the prefixes sdreport_ and init_ cannot both be applied to the same object.
There is no need to do so, since initial parameters are automatically included in the stan-
dard deviations report. AD Model Builder also has 3 and 4-dimensional arrays. They are
declared like

3darray dthree(1,10,2,20,3,10)

B-1



Declaration Type of object Type of object

in DATA_SECTION in PARAMETER_SECTION

[init_]int int int

[init_][bounded_]number double dvariable

[init_][bounded_][dev_]vector vector of doubles (dvector) vector of dvariables(dvar_vector)

[init_][bounded_]matrix matrix of doubles (dmatrix) matrix of dvariables(dvar_matrix)

[init_]3darray 3-dimensional array of doubles 3-dimensional array of dvariables

4darray 4-dimensional array of doubles 4-dimensional array of dvariables

5darray 5-dimensional array of doubles 5-dimensional array of dvariables

6darray 6-dimensional array of doubles 6-dimensional array of dvariables

7darray 7-dimensional array of doubles 7-dimensional array of dvariables

sdreport_number N/A dvariable

likeprof_number N/A dvariable

sdreport_vector N/A vector of dvariables(dvar_vector)

sdreport_matrix N/A matrix of dvariables(dvar_matrix)

Table B.1

4darray df(1,10,2,20,3,10)
init_3darray dd(1,10,2,20,3,10) // data section only
init_4darray dxx(1,10,2,20,3,10) // data section only

Table B.1 contains a summary of declarations and the types of objects associated with them
in ADModel Builder. The types dvariable, dvector, dmatrix, d3_array, dvar_vector,
dvar_matrix, and dvar3_array are described in the autodif user’s manual.
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Appendix C

The Profile Likelihood

We have been told that the profile likelihood as calculated in ADModel Builder for dependent
variables may differ from that calculated by other authors. This section will clarify what we
mean by the term and motivate our calculation.

Let (x1, . . . , xn) be n independent variables, f(x1, . . . , xn) be a probability distribution,
and g denote a dependent variable that is a real valued function of (x1, . . . , xn). Fix a value g0
for g and consider the integral∫

{x:g0−ε/2≤g(x)≤g0+ε/2}
f(x1, . . . , xn)

which is the probability that g(x) has a value between g0 − ε/2 and g0 + ε/2. This prob-
ability depends on two quantities: the value of f(x) and the thickness of the region being
integrated over. We approximate f(x) by its maximum value x̂(g) = maxx:g(x)=g0{f(x)}.
For the thickness, we have g(x̂ + h) ≈ g(x̂) + 〈∇g(x̂), h〉 = ε/2, where h is a vector per-
pendicular to the level set of g at x̂. However, ∇g is also perpendicular to the level set, so
〈∇g(x̂), h〉 = ‖∇g(x̂)‖‖h‖, so in turn, ‖h‖ = ε/(2‖g(x̂)‖). Thus, the integral is approximated
by εf(x̂)/‖∇g(x̂)‖. Taking the derivative with respect to ε yields f(x̂)/‖∇g(x̂)‖, which is
the profile likelihood expression for a dependent variable.
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Appendix D

Concentrated Likelihoods

The log-likelihood function for a collection of n observations Yi, where the Yi are assumed
to be normally distributed random variables with mean µ and variance σ2, has the form

− n log(σ)−
n∑
i=1

(Yi − µi)2

2σ2
(D.1)

To find the maximum of this expression with respect to σ, take the derivative of expres-
sion (D.1) with respect to σ and set the resulting equation equal to zero.

−n/σ +
n∑
i=1

(Yi − µi)2

σ3
= 0 (D.2)

Solving equation (D.2) for σ̂2 yields

σ̂2 = 1

/
n

n∑
i=1

(Yi − µi)2 (D.3)

Substituting this value into expression (D.1) yields

−.5n log

(
n∑
i=1

(Yi − µi)2
)

+ const (D.4)

where “const” is a constant that can be ignored. It follows that maximizing expression (D.1)
is equivalent to maximizing

−.5n log

(
n∑
i=1

(Yi − µi)2
)

(D.5)

Expression D.5 is referred to as the “concentrated log-likelihood.”
See [6] for more complicated examples of concentrated likelihoods.
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Monte Carlo, 12-3
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FUNCTION, 1-34, 1-39
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beta function, incomplete, 15-13
Cauchy density, 15-3
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posfun, 15-14
pow, 15-1
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4
tan, 15-1
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init_bounded_vector_vector, 10-1
init_matrix_vector, 10-1
init_number_vector, 10-1
init_vector_vector, 10-1
INITIALIZATION_SECTION, B-1
input
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Kalman filter, 8-1
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log10, 15-1
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profile likelihood, 1-40, 1-44, C-1

confidence limits, 1-40
form of calculations, 1-44, C-1
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15-8
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simple example, 1-5
sin, 15-1

sinh, 15-1
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sorting, 15-11

dmatrix, 15-11
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sqrt, 15-1
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std, 1-10
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dat file, 16-1
sub

accessing subobjects, 15-11
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sub, 15-11
SUBROUTINE, 1-34
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avoiding loops with, 1-46
examples of, 1-46
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syntax rules, 1-8
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regression function, 1-8
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vector
element-wise division, 15-2
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fill_randn, 15-8
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() to extract subvector, 15-9
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