
Optimization Methods & Software

Vol. 27, No. 2, April 2012, 233–249

AD Model Builder: using automatic differentiation for statistical

inference of highly parameterized complex nonlinear models

David A. Fourniera, Hans J. Skaugb*, Johnoel Anchetac, James Ianellid, Arni Magnussone,

Mark N. Maunderf , Anders Nielseng and John Sibertc

aOtter Research Ltd., Sidney, Canada; bDepartment of Mathematics, University of Bergen, Norway;
cJoint Institute for Marine and Atmospheric Research, University of Hawaii at Mānoa, USA;

dREFM Division, Alaska Fisheries Science Center, NOAA, Seattle, WA, USA; eMarine Research Institute,
Reykjavik, Iceland; f Inter-American Tropical Tuna Commission, La Jolla, CA, USA;

gTech. Univ. Denmark, Natl. Inst. Aquat. Resources, Charlottenlund, Denmark

(Received 27 September 2010; final version received 10 June 2011)

Many criteria for statistical parameter estimation, such as maximum likelihood, are formulated as a nonlin-
ear optimization problem.Automatic Differentiation Model Builder (ADMB) is a programming framework
based on automatic differentiation, aimed at highly nonlinear models with a large number of parameters.
The benefits of using AD are computational efficiency and high numerical accuracy, both crucial in many
practical problems. We describe the basic components and the underlying philosophy of ADMB, with
an emphasis on functionality found in no other statistical software. One example of such a feature is the
generic implementation of Laplace approximation of high-dimensional integrals for use in latent variable
models. We also review the literature in which ADMB has been used, and discuss future development of
ADMB as an open source project. Overall, the main advantages of ADMB are flexibility, speed, precision,
stability and built-in methods to quantify uncertainty.

Keywords: ADMB; automatic differentiation; parameter estimation; optimization; Laplace approxima-
tion; separability

1. Introduction

Answering real-world management and research questions using data typically requires com-

plex nonlinear models to adequately represent the system under study. Historically, simplifying

assumptions were made to allow explicit expression for estimates of model parameters and their

uncertainty based on the available data. With the advent of computers and numerical procedures

these simplifications are no longer needed and the analysts can apply the model that they consider

most appropriate. Parameters are often estimated by optimizing an objective function (e.g. like-

lihood) that measures how well the model predicts the data. Efficient methods for optimizing the

objective function are based on derivatives, which typically are approximated numerically using

finite differences, or alternatively by evaluating an analytical expression for the derivatives. The

former method can be unstable, and is inefficient when there are many parameters. Analytical

*Corresponding author. Email: skaug@math.uib.no

ISSN 1055-6788 print/ISSN 1029-4937 online
© 2012 Taylor & Francis
http://dx.doi.org/10.1080/10556788.2011.597854
http://www.tandfonline.com

234 Fournier et al.

derivatives are preferable, but may be hard to derive for complex models implemented as thousands

of lines of computer code. A third alternative is provided by automatic differentiation (AD), which

is a technique for numerical evaluation of derivatives of a mathematical function available in the

form of a computer program [22,23].

Many software packages and libraries can perform AD on user-supplied programs written in

standard languages such as FORTRAN and C++ [6,24,26]. These packages, however, focus only

on derivative calculations; the user must incorporate the resulting derivative code into applications

such as a function minimization problems or sensitivity analysis. More specialized mathemati-

cal programming environments such as MATLAB and NAG have also incorporated AD. Similar

functionality is, however, very limited in statistical softwares such as R, SAS, SPSS and STATA.

This is somewhat surprising, since the method of least-squares and likelihood-based parameter

estimation, which are commonly used in statistical inference, involve minimizing an objective

function. The availability of accurate derivative information thus seems crucial in all but trivial

estimation problems. For many models found in statistical packages, the derivatives of the objec-

tive function have been hand-coded. In settings where the user specifies the objective function,

as opposed to choosing from prefixed options, it seems that AD has an important role to play.

Derivatives are also useful for many other components of statistical inference.

In this paper, we describe AD Model Builder (ADMB), an AD-based framework for doing

statistical parameter estimation, that includes a complete suite of tools for developing nonlinear

statistical models. ADMB seamlessly integrates AD with a function minimizer which is used to

minimize an objective function (e.g. a negative log-likelihood function). ADMB has functionality

not found in other statistical software, e.g. profile likelihood and Laplace approximations of high-

dimensional integrals. In both of these, AD plays a crucial role. Besides profile likelihood and

the delta method, all ADMB models have built-in capability to use Markov-chain Monte Carlo

(MCMC) analysis to evaluate the uncertainty of estimated quantities.

Originally developed by David A. Fournier in the late 1980s, ADMB was designed for fish

stock assessments with hundreds of parameters and highly nonlinear objective functions. Its use

has since spread within the broader ecological community and other scientific fields. ADMB is

today available as a free open-source software, see http://www.admb-project.org. This

paper gives an overview ofADMB as a model-building tool, and is intended to be the mainADMB

reference.

The rest of this paper is organized as follows. Section 2 explains the basic working of ADMB

with an emphasis on the role played by AD, Section 3 presents the use of the Laplace approxima-

tion, Section 4 presents an overview of studies in which ADMB has been used, Section 5 presents

the open source project and Section 6 is a summary and discussion. Readers less interested in the

technical details and wanting an overview ofADMB can skip Sections 2.1–2.3, and all of Section 3.

2. What is AD Model Builder?

From the user’s point of view, AD Model Builder is similar to a fourth-generation computer

language. The ADMB source code contains shorthand declarations of data and of specialized

types supporting AD along with C++ code defining the user’s model. The ADMB source code

is converted to C++ by the ADMB pre-processor, and the resulting C++ code is then compiled

and linked with the AD library to create an executable program (see Figure 1).

These steps are automated in scripts and in an integrated development environment (IDE). When

run, the executable program produces parameter estimates, estimates of standard deviations, and

other quantities useful for statistical inference. Here, we provide a simple example for the benefit

of the user without previous exposure to AD before proceeding with a more complete description

of ADMB.

Optimization Methods & Software 235

<filename>.tpl <filename>.cpp <filename>[.exe] <filename>.par

Model description C++ program Binary Result files

.std

.cor

Preprocess
Compile

 Link Run

Figure 1. The different steps starting with the model specification and ending with the estimated model parameters and
uncertainties. The preprocessing, compiling and linking is typically collected in a single command.

2.1 A simple example

Consider a simple regression model,

yi = a + bxi + εi, (1)

for a sequence of n experiments. Here, yi is the response of the ith experiment, xi the explanatory

variable and εi the zero-mean measurement error. Table 1 shows the ADMB code for this model,

using concentrated negative log-likelihood as the objective function.

The simplest least-squares approach, found in many textbooks, is based on the objective function

S = −
n

∑

i=1

{yi − (a + bxi)}2. (2)

The function is optimized when the derivative with respect to the parameter being estimated is

equal to zero. Therefore, the least squares estimates of a and b are found by solving

∂S

∂a
=

n
∑

i=1

2{yi − (a + bxi)} = 0,

∂S

∂b
=

n
∑

i=1

2xi{yi − (a + bxi)} = 0. (3)

ADMB accomplishes the same thing numerically for any differentiable objective function. The

AD routines compute the required derivatives, and the function minimizer decreases −S until the

derivatives are arbitrarily close to zero (by default <10−4).

The AD algorithms in ADMB take advantage of the fact that C++ compilers reduce even

the most complex statement into a sequence of elemental unary or binary operations on floating

point representations of real numbers. At the time that these operations are executed, all of the

Table 1. ADMB listing for a simple lin-
ear regression model.

DATA−SECTION
init−int n

init−vector x(1,n)

init−vector y(1,n)

PARAMETER−SECTION
init−number a

init−number b

vector yfit(1,n)

objective−function−value f

PROCEDURE−SECTION
yfit=a+b∗x;
f=0.5∗n∗log(norm2(y-yfit));

236 Fournier et al.

Table 2. Simple example of automatic differentiation.

Step Operation Value Derivatives

1 t1 = bxi bxi
∂t1
∂b

= xi

∂t1
∂xi

= b

2 t2 = a + t1 a + bxi
∂t2
∂a

= 1
∂t2
∂t1

= 1

3 t3 = yi − t2 yi − (a + bxi)
∂t3
∂y

= 1

∂t3
∂t2

= −1

4 t4 = t2
3 {yi − (a + bxi)}2 ∂t4

∂t3
= 2t3

5 Si = t4 {yi − (a + bxi)}2 ∂Si
∂t4

= 1

Note: Each term (2) is broken down into elemental operations, and the chain rule of
differentiaton is applied.

information required to compute the derivatives is available for use. For example, one possible

way for a compiler to parse the ith term in (2) into elemental operations is shown in Table 2.

The partial derivatives in the above table can be combined using the chain rule:

∂Si

∂a
= ∂t2

∂a

∂t3

∂t2

∂t4

∂t3

∂Si

∂t4
= 2{yi − (a + bxi)}, (4)

∂Si

∂b
= ∂t1

∂b

∂t2

∂t1

∂t3

∂t2

∂t4

∂t3

∂Si

∂t4
= 2xi{yi − (a + bxi)}. (5)

2.2 Implementation of AD

There exist two AD strategies: the forward mode and the reverse mode. In the forward mode,

derivatives of temporary variables with respect to the independent variables (a and b in Section 2.1)

are propagated in parallel with the general program flow. This amounts to sequential accumulation

of the products (4) and (5). The forward mode is the intuitive way of organizing the calculations

for a person with a traditional calculus background. It, however, has the drawback that the cost of

propagating the derivatives grows in proportion to the number of independent variables. This is

limiting in problems with many estimated parameters. For the reverse mode, on the other hand,

there is the celebrated result that the full gradient of the objective function can be obtained at a

cost of no more than four times the cost of evaluating the objective function [22, p. 57]. For this

reason, ADMB uses the reverse mode as a general strategy for calculating first-order derivatives.

The reverse mode involves first evaluating the objective function, storing in memory the value

of each intermediate quantity, that is t1, . . . , t4 in the program listing of Table 2. This is known

as the ‘forward sweep’, in which no derivatives are calculated. The derivatives in the rightmost

column of Table 2 are evaluated as part of the ‘reverse sweep’, where the main goal is to find the

derivative of the output variable with respect to each intermediate variable, resulting in a sequence

of ‘sensitivities’: ∂S/∂t4, ∂S/∂t3, ∂S/∂t2 and ∂S/∂t1. Each step involves the chain rule, and the

reverse order of the calculations is essential. Now, the gradient is easily extracted:

∂S

∂a
= ∂S

∂t2

∂t2

∂a
,

∂S

∂b
= ∂S

∂t1

∂t1

∂b
.

For a full description of the reverse mode the reader is referred to [22].

The drawback of the reverse mode is the need to store in memory values of the temporary vari-

ables (t1, . . . , t4) calculated during the forward sweep. For a simple program listing as in Table 2

Optimization Methods & Software 237

this is not a problem, but for programs containing loops that unfold into long lists, the computa-

tional graph may become too large to fit in the physical memory, and hence must be written to a file.

Writing to file greatly slows down the execution of the program. To counteract this phenomenon

ADMB applies various techniques collectively known as pre-accumulation [22, p. 185].

ADMB implements reverse mode AD by overloading C++ operators [22, p. 93]. With this

strategy the chain rule is applied at run time (of the executable program), as opposed to generating

derivative code at compilation time. The latter technique is known as ‘source transformation’ in

the AD literature. The internal part of ADMB, that overloads all the mathematical operators and

functions in C++ and sets up the data structures needed for the reverse sweep, is a library known

as AUTODIF [2].

AUTODIF also provides ‘adjoint code’ for most standard arithmetic operations involving num-

bers, vectors and matrices, and combinations of these. The use of adjoint code avoids the need to

store the value of each elemental operation during the forward sweep. As an example, take the

Cholesky decompositionchol(X) of a matrixX. During the forward sweep, only the value of the

elements of X are stored, not those internal to the Cholesky algorithm. During the reverse sweep,

X is restored and chol(X) is calculated again, this time with a code that saves all intermediate

quantities within the Cholesky algorithm. Using this information, a ‘local’ reverse sweep of the

Cholesky code is performed. (This approach is very similar to what is known as ‘checkpointing’

in the AD literature [22, p. 319].) Unlike the general reverse sweep, which is implemented using

operator overloading in C++, this local reverse sweep is performed by a hand-coded algorithm,

which is typically able to reduce the total storage requirements by overwriting variables no longer

in use. Details of implementation are given in [60] in the case of the Cholesky algorithm. It

is further shown in [60] that the adjoint code (including both forward and reverse sweeps) for

chol(X) can be implemented using only the storage allocated for X. What is referred to above

as ‘hand-coded’ derivative code could have been generated automatically using a source transfor-

mation tool such as TAPENADE [26], but this is not currently part of ADMB. The existence of

adjoint code for common functions is a key part of ADMB, and an important reason why it can

be applied to large real-world problems.

2.3 Parameter estimation and uncertainty

Although the method of least squares provides a criterion for obtaining point estimates of parame-

ters in many situations, most of the features ofADMB require that we adopt a likelihood framework

based on a full probabilistic formulation of the model. For the simple regression (1) this amounts

to assuming that the measurement error is normally distributed with mean 0 and variance σ 2,

written as εi ∼ N(0, σ 2). Now the log likelihood is given as

l(a, b, σ) =
n

∑

i=1

log{p(yi)} =
n

∑

i=1

{

− log(
√

2πσ) − {yi − (a + bui)}2

2σ 2

}

, (6)

where p(yi) denotes a probability density. ADMB will maximize l(a, b, σ) using a quasi-Newton

algorithm with derivatives obtained using AD (For historical reasons ADMB actually minimizes

the objective function so in practice the negative log-likelihood is used). Once convergence has

been reached, ADMB optionally calculates the covariance matrix by inverting the observed Fisher

information (Hessian of l), −(∂2/∂θ2)l(θ), where θ = (a, b, σ). The second-order derivatives are

obtained by applying finite differences to −(∂/∂θ)l(θ), which itself is obtained by AD. The use

of finite differences in this context is much less problematic than it is for maximizing l(θ), as the

Hessian only provides approximate standard deviations, with the approximation error typically

being larger than the numerical error arising from the use of finite differences.

238 Fournier et al.

2.3.1 Profile likelihood

The profile likelihood feature ofADMB lets one study the log-likelihood surface for one parameter

at a time, while maximizing with respect to the remaining parameters.ADMB also allows profiling

with respect to a function φ = φ(a, b, σ) of the parameters. From a computational perspective

this leads us to the constrained optimization problem:

l(φ0) = argmax
a,b,σ

, l(a, b, σ); subject to φ(a, b, σ) = φ0.

This is particularly useful when φ is an ‘interest parameter’, while the remaining parameters of

model are nuisance parameters. The profile likelihood curve l(φ) is a graphical display of the

information contained in the data about the interest parameters.

2.3.2 Markov chain Monte Carlo

During the 1990s, Markov chain Monte Carlo (MCMC) techniques started to have a large impact

on the way statistics was practiced, particularly on Bayesian statistics [21]. The basic MCMC

algorithm implemented in ADMB is a random walk Metropolis–Hastings algorithm [21, p. 289],

where the initial point is the mode of the specified objective function, and the proposal covariance

is the inverse Hessian, both calculated using AD as described previously. The literature of ADMB

applications shows that the MCMC features are widely used. ADMB also has an MCMC routine

that integrates over some parameters using Laplace approximation (see Section 3) and a hybrid

MCMC [47] that both take additional advantage of AD to improve the MCMC performance.

2.4 Model specification

ADMB partitions the model specification into three logical steps: (1) read in the data (x’s and

y’s in the simple regression); (2) declare model parameters (a and b), possibly with boundaries

and a specification of the order in which each parameter becomes ‘active’ in the optimization

process; and (3) code the negative log-likelihood function (essentially S) to be minimized with

respect to the model parameters. This partitioning helps users organize and structure their model

implementation and thus aids thinking about the problem at hand. The basic syntax is based on

C++, but with many helpful features.

In the data section, common constant objects (number, vector, matrix, and many more) are

declared and read in with a single command. For instance, to read in a 100 by 5 matrix A from

the associated data file, the user would write:

init_matrix A(1,100,1,5)

This greatly simplifies the process of reading in data, and is especially helpful for users unfamiliar

with C++.

The syntax for declaring parameters has a number of helpful features. Each of the different

model parameter objects (numbers, vectors, matrices, and many more) can be declared by a single

line, with optional bounds on the model parameter and an optimization phase. For instance, to

declare a vector with five model parameters each between 0 and 1, but to be estimated only after

another set of model parameters is optimized, the user would write:

init_bounded_vector theta(1,5,0.0,1.0,2)

The first two numbers specify the range of valid indices for the parameter vector. The third and

fourth arguments specify the bounded interval, and the final argument specifies the order in which

Optimization Methods & Software 239

these model parameters are to be estimated. Model parameters assigned to phase 1 are estimated

first, while other parameters are fixed at their initial values. After phase 1 converges, the optimizer

starts phase 2, where parameters assigned to phases 1 and 2 are estimated, and so on, until all

parameters have been estimated simultaneously in the final phase. Bounding and estimation in

phases is especially helpful in large (say >20 model parameters) nonlinear optimization problems.

Bounding can prevent the optimization algorithm from searching among parameters where the

objective function is not well defined. Optimization in phases can be helpful in getting model

parameters with no obvious initial values into the right domain before the full optimization is

started. For instance, if a good initial value is known for parameter ϑ but not for parameter τ ,

then it makes sense to set ϑ fixed at its initial value and optimize w.r.t. τ in the first phase, then –

in second phase – optimize both, but initializing τ at its estimate from the first phase.

Unlike data and model parameters, which can be specified without any knowledge of C++,

specification of the function to be minimized (typically a negative log-likelihood function)

requires a basic understanding of C++ syntax. In addition to functions normally available in

C++, AD Model Builder provides a variety of mathematical and statistical functions, such as

vector and matrix operations, sums, probability density functions, etc. The user is required to

code the function to be minimized, but the task is greatly simplified because of these built-in

functions.

Compared to generic AD software, ADMB provides unique features useful for statistical appli-

cations. One feature allows the declaration of variables which are functions of a number of model

parameters and are considered as ‘derived’ parameters (as opposed to ‘fundamental’ parame-

ters that are directly estimated). The errors in the estimates of the ‘fundamental’ parameters are

propagated through these ‘derived’ parameters when the standard deviation of all parameters are

calculated. The following simple declaration will invoke computation of the standard deviation

of the ‘derived’ parameters:

sdreport_number MyQuantity_of_interest

The variable MyQuantity_of_interest is then assigned a value in the model code as some

function of model parameters, e.g. MyQuantity_of_interest = a*b. When the Hessian

matrix and covariance matrix calculations are carried forward, ADMB tracks the Jacobian. The

appropriate first-order Taylor-series propagation of errors (i.e. the ‘delta method’) is applied, and

the asymptotic approximation of the variance–covariance matrix includes the ‘derived’parameter.

Running a correctly specified executable will then maximize the coded likelihood function

with respect to the model parameters. It will produce a number of output files containing, for

example, the function value at the minimum, the estimated model parameters and the covariance

matrix of the model parameters as estimated by the second derivatives of the function at the

minimum.

2.5 User interfaces

The default ADMB user interface consists of a command-line program that translates the ADMB

source code to C++ source code, along with shell scripts to simplify the process of translating,

compiling and linking an application. Once built, model applications support a standard set of

command line options [1] to specify optimization and other details. All input and output are in

plain text files.

An integrated development environment called ADMB-IDE [36] is available, streamlining

the installation and workflow between editor, compiler and debugger. A typical model-building

session involves modifying and recompiling the code between test runs (Figure 2), but fully

developed general models have been used for years without modification.

240 Fournier et al.

Figure 2. Typical AD Model Builder session, using ADMB-IDE. The top-left window shows the model code, demon-
strating some of the sections and classes recognized by the ADMB-to-C++ translator. The menu includes commands to
build a model, run and view the output. Other windows show point estimates, standard errors and correlation of estimated
quantities.

Several extensions that interact with the R programming language have been developed [7,38,

55,62], and the process of converting models between ADMB and the BUGS (Bayesian inference

Using Gibbs Sampling) programming language has been described [40].

3. Random effects

The ability to implement random effects is a recent addition to ADMB, using the Laplace approxi-

mation. This optional module,ADMB-RE, allows users to specify both random effects and regular

model parameters for estimation. The task for this type of model is to find the maximum likelihood

for all parameters while integrating over the random effects. The Laplace approximation of the

marginal likelihood leads to a nested optimization problem and a need for calculating third-order

derivatives by AD. This is done by successive application of forward and reverse mode ADs.

This approach is described in [61]. Note that the term ‘random effect’ is defined more broadly

in ADMB than in the statistical literature. In ADMB, random effects include not only regression

coefficients that are random variables, but also state–space models, Markov random fields, and

frailty models in survival analysis.

Analysts often split unknown model quantities into two categories: random effects and fixed

effects. The former, which we denote by u, are thought of as arising from some random experiment

or event, and hence there is an associated probability density p(u). The fixed effects are what we

have called ‘parameters’up to now, and are non-random quantities which describe the ‘population’

from which u, together with data y, are generated. We denote the fixed effects by a vector θ . In

the simple regression model of Section 2, we had θ = (a, b, σ 2) and no random effects. Models

Optimization Methods & Software 241

are usually taken to be hierarchical: first we sample u from pθ (u), and then we sample y from the

conditional probability density pθ (y|u). That is, in drawing the value of y, we use the realized

value of u. ADMB treats θ and u differently, but before discussing computational aspects, we

look at a simple example to clarify the concepts.

To make the simple regression a bit more complicated (and realistic) we shall consider the

errors-in-variables problem: there is a measurement error associated with xi , not just with yi . If

we disregard this error, then the estimate of b will be biased. We remedy this by introducing ui , a

version of xi without a measurement error. The model now has two response variables, x and y,

and is given by

yi = a + bui + εi,

xi = ui + ei, (7)

where εi ∼ N(0, σ 2) as above, and ei ∼ N(0, σ 2
e) is the measurement error associated with xi .

To complete the probabilistic specification of the model, we assume that that ui ∼ N(µ, σ 2
u). The

reason this assumption is needed is that the ui’s are unobserved.

The ADMB objective function is (the negative logarithm of) the joint probability density of the

(u, x, y)’s:

n
∏

i=1

pθ (xi |ui)pθ (yi |ui)pθ (ui) =
n

∏

i=1

[

1√
2πσe

exp

(

− (xi − ui)
2

2σ 2
e

)

× 1√
2πσ

exp

(

−{yi − (a + bui)}2

2σ 2

)

× 1√
2πσu

exp

(

−{ui − µ}2

2σ 2
u

)]

. (8)

The parameter vector has grown to θ = (a, b, σ 2, σ 2
x , µ, σ 2

u). The fact that (8) is a product of

terms, each depending only on a single ui , has important computational implications, but is not a

requirement imposed by ADMB. Models without this property include time-series models, with

state variable ui and observation yi , for which the joint density is given by

n
∏

i=1

pθ (yi |ui)pθ (ui |ui−1). (9)

Further, the distribution of yi need not be Gaussian, but can be any other probability distribution,

such as the Poisson, pθ (yi |ui) = λ
yi

i /(yi !) exp(−λi), where λi = exp(ui). Similarly, the distri-

bution of ui need in principle not be Gaussian. However, the Laplace approximation discussed

below works best if non-Gaussian random effects are obtained by transformation of an underly-

ing Gaussian random variable u′
i . For example, if we want to obtain a log-normal random effect,

we let u = exp(u′), where u′ ∼ N(0, 1). This trick adds another level to the model hierarchy. In

summary, the requirement is that an expression is available for the joint density of y and u, and

that this density is three times differentiable with respect to both u and θ (but not y).

A full explanation of the philosophical basis for viewing u as random and θ as non-random is

beyond the scope of this paper. However, we note that our position is intermediate between

that of the two competing traditions in statistics: Bayesianism (in which θ is also random)

and frequentism (in which the ui are non-random, but still unknown), and hence represents

a reasonable compromise to many practitioners. The same philosophical distinction between

fixed and random parameters is also found in other more narrowly targeted mixed model

software.

242 Fournier et al.

3.1 Parameter estimation via the Laplace approximation

Parameters are estimated using a two-stage approach known as empirical Bayes [11]. First, θ is

estimated by maximum likelihood, i.e., θ̂ = arg maxθ L(θ), where L(θ) = pθ (y) is the likelihood

function. Then, a Bayesian posterior mode estimate is used for u:

û = argmax
u

pθ̂ (y|u)pθ̂ (u).

The main computational challenge is to evaluate the marginal density of y,

pθ (y) =
∫

pθ (y, u) du, (10)

which has no general analytical solution. Here, pθ (y, u) is given by (8) and (9) or derived from

some other model of interest. Because of the high dimension of u (n = 1000, say), ordinary

quadrature rules for numerical integration cannot be used, and an alternative approximation is

required. ADMB uses the Laplace approximation of the integral (10), which yields the likelihood

approximation

L∗(θ) = det{H(θ)}−1/2 exp[g{û(θ), θ}], (11)

where

g(u, θ) = log{pθ (y, u)}, (12)

û(θ) = argmax
u

g(u, θ), (13)

H(θ) = − ∂2

∂u2
g(u, θ)

∣

∣

∣

∣

u=û(θ)

. (14)

For simplicity, we have suppressed the dependency of g on y. Note that without the term

det(H)−1/2, the right-hand side of (11) is a profile likelihood (Section 2.3.1). ADMB evalu-

ates the Hessian, H , by AD using a forward pass followed by a reverse pass. As pointed out

in [61], the combination of the Laplace approximation and AD makes parameter estimation in

random effects models automatic from a user perspective. The only responsibility of the ADMB

user is to write down the correct expression for g, the joint density. Cholesky decomposition of

H is used to evaluate det(H), and hence the Laplace approximation is only well defined in the

part of θ space where H(θ) is positive definite. Using the mechanisms built into ADMB for doing

constrained optimization, the user can ensure that the numerical search for the optimum of L∗(θ)

is constrained to this region.

From a computational perspective, the Laplace approximation represents a nested optimization

problem, where the inner level (12) must be solved for each value of θ that is requested by the outer

level (11). For the purpose of maximizing (11), or in practice its logarithm (to increase numerical

stability), it is advantageous to obtain the exact gradient of L∗(θ). To this end, the formula

∂û(θ)

∂θ
= −{H(θ)}−1 ∂2

∂u∂θ
g(û, θ)

has been noted in the literature [5,61]. The mixed partial derivatives of g(u, θ) are evaluated as part

of the same process that evaluates H by AD. Further, by evaluating ∂/∂u g(u, θ) and ∂/∂θ g(u, θ)

by reverse mode AD, the gradient with respect to θ of the exponential term in (11) is obtained.

Making analytical progress in evaluating the gradient of the remaining determinant term is pos-

sible, but ADMB uses an entirely AD-based approach. The expression ∂θ det(H(θ)) involves

Optimization Methods & Software 243

third-order mixed partial derivatives of g(u, θ). Second-order derivatives by AD are already

involved in evaluating det(H(θ)). When traversing the computational graph of the computation

(u, θ) → H → det(H) in reverse, a third layer of AD is added.

One may view the Laplace approximation as a mapping: (θ, û(θ), H(θ)) → F(θ, û(θ), H(θ)),

where F(θ, u, H) = det(H)−1/2 exp{g(u, θ)}. Other integral approximations such as importance

sampling and adaptive Gaussian quadrature are obtained for other choices of F [61], and are

implemented in ADMB as (more accurate) alternatives to the Laplace approximation. Adaptive

Gaussian quadrature is only applicable to low-dimensional integrals, but is nevertheless applicable

to many regression models.

3.2 Conditional independence and partial separability

The above recipe for evaluating the Laplace approximation by AD is in principle applicable

to any model for which a computer program can be written that evaluates g(u, θ). However,

significant computational gains can be achieved in ADMB by exploiting the special structure

of certain types of models. For instance, in model (8) the integral (10) becomes a product of

n one-dimensional integrals, for which ADMB performs a series of n one-dimensional Laplace

approximations (or optionally adaptive Gaussian quadrature). The state–space model (9) does not

factorize completely, but instead becomes

g(u, θ) =
n

∑

i=2

g(ui |ui−1; θ), (15)

where g(ui |ui−1; θ) = log{pθ (yi |ui)pθ (ui |ui−1)}. That each term in the sum depends only on

two ui terms is known in the AD literature as partial separability [20], and is exploited by ADMB

both in the AD computations and when evaluating det(H), as H is a tridiagonal matrix.

Separability also has an important probabilistic interpretation in terms of conditional indepen-

dence under the (Bayesian) posterior distribution

pθ (u|y) = pθ (y|u)pθ (u)

pθ (y)
, (16)

where pθ (y) is given by (10). When element (i, j) of the Hessian H is zero, ui and uj become

conditionally independent under (16), given the remaining u’s. For the state–space model, with its

banded H, we can make the more specific statement that for i < j < k, ui and uk are independent

given uj .

Understanding the link between conditional independence and separability is important for

assessing the computational complexity of a given model. Further, there may be two different

ways of implementing a model, one leading to a separable g, the other not. A simple example is

the random walk, ui = ui−1 + ei, where ei is an error term. The joint probability distribution of the

u’s is now p(u1)
∏n

i=2 p(ui |ui−1), yielding separability, but a probabilistically equivalent model

is obtained if we consider the ei to be our random effects. Now, the ui’s are simply intermediate

variables in our model, on the way to the response variables yi = ui + εi . Because yn = εn +
∑n

i=1 ei depends directly on all of e1, . . . , en, the model is not separable, even though the joint

density of the e’s is
∏n

i=1 p(ei). TheADMB user must explicitly point out the separability structure

by letting each term in (15) be a function call. Although automatic detection of separability is

possible in principle, this requirement forces the user to think correctly about the structure of the

model.

244 Fournier et al.

4. ADMB users and applications

The AUTODIF Library and ADMB were initially developed to implement highly parameterized

integrated statistical fisheries assessment models that were essentially impossible to estimate in

the software available at the time [16,17,18,19,28]. For this reason, the majority of early users were

fisheries stock assessment modellers [43,56]. Fisheries models are still the majority of ADMB

applications, but the user community is becoming more diverse through the direct promotion of

ADMB by the ADMB Foundation and ADMB Project, and through courses taught by several

groups, including modules within university graduate courses.

ADMB-based computer models are used globally to monitor populations of many endan-

gered and commercially valuable species. Population models written in ADMB are used to

assess more than 150 commercial fish stocks around the world, worth billions of dollars, and

every U.S. NOAA Fisheries Science Center uses ADMB in their research. There are more

than 150 peer-reviewed publications and numerous reports based on analyses using ADMB.

Users range from universities and research institutions to government departments and private

companies.

4.1 Stock assessment models using ADMB

Several general fisheries stock assessment models have been developed with ADMB or the

AUTODIF Library alone. These models integrate a variety of data types to estimate parame-

ters representing the fish population dynamics and how the population responds to fishing. For

example, MULTIFAN-CL (http://www.multifan-cl.org/), which is based onAUTODIF, was devel-

oped to analyse tuna populations [18] and extended to include spatial structure in the population

dynamics and fitting to tagging data [25].

Coleraine [27] was the first general fisheries stock assessment model developed with ADMB,

and as a consequence, provided the first general Bayesian stock assessment model, which included

the use of priors and modelling future projections for management strategy evaluation and decision

analysis. Coleraine has been applied to several stocks globally, been used as a teaching tool in

university courses and was included in the UN Food and Agriculture Organization’s Bayesian

stock assessment user’s manual [52].

One of the largest and most used ADMB applications is Stock Synthesis [45], a very general

fisheries stock assessment program. Stock Synthesis was initially used to assess U.S. Pacific

groundfish stocks, but is now used globally.

4.2 Other models using ADMB

The efficiency and stability of parameter estimation in ADMB makes it ideal for nonlinear models

that are highly parameterized [18,25,41], simpler nonlinear models with hundreds of thousands

of data points [39,42], or complex nonlinear models that are parameter-rich and include large

data sets [58]. It is also ideal for smaller models that need to be repeated a large number of times

when performing analyses such as bootstraps, cross-validation, profile likelihoods, simulation

testing [37,54] or management strategy evaluation [4,50,53]. The random effects module is ideal

for implementing nonlinear random effects models [44,65] or modelling process variability in

state–space models [48]. The Bayesian MCMC module can also be used to implement these

models [44]. There have been several ADMB applications outside fisheries. Many of these are

fisheries-related such as modelling the dynamics of marine mammals [8,9,30,63,64] and seabirds.

ADMB is starting to make its way into the wildlife [10,14,15,44], genetic [12,13,32,33], botany

Optimization Methods & Software 245

[31], agriculture [49], oceanography [29] and paleontology [34] literature. ADMB has also been

used in economic [46,51] and medical research [35].

5. The ADMB project

The ADMB Project began in 2007 with the primary goals of sustaining ADMB into the future

and expanding its user base. The first steps in the project were to make ADMB freely available

and to open the source code1. The ADMB Foundation administers the project, the University of

California holds the copyright, and ADMB is released as a free software under the BSD license.2

ADMB is supported on all common operating systems (Windows, Linux, Mac OS, OpenSolaris),

for all common C++ compilers (GCC, Visual Studio, Borland), and for both 32 and 64 bit

architectures.

The software is written in C++ and GNU Flex, currently at 172,000 and 9000 lines of code,

respectively. Currently, a Subversion3 repository is maintained at the University of Hawaii, and

formal releases are distributed on Google Code. The source code is tested continuously on a

Buildbot4 system, and Doxygen5 comments are used to prepare documentation of the application

programming interface (API). Extensive manuals are available for ADMB [1], the random effects

module [3] and the internal AUTODIF library.

6. Discussion

AD Model Builder is a flexible and powerful tool for development of complex nonlinear statistical

estimation problems. Its speed and unique capabilities, e.g. Laplace approximation, make it the

tool of choice for many applications.

Although the origin of ADMB is in resource management, its use is gradually spreading to

other disciplines in ecology and the social and medical sciences. Transformation of ADMB into a

free open-source software vastly increases the number of potential users and should enable wider

adoption of ADMB.

Opening the software to a wider community of developers offers the possibility that ADMB

users might contribute specialized ‘packages’, bundles of ADMB functions that other users can

apply in their models. The infrastructure to solicit, test and distribute such contributed packages

is one of the priorities for future development. The ADMB Project welcomes scientists and

programmers with the ability and enthusiasm to contribute to ADMB.

Many ADMB users are also R users, and several approaches to creating interfaces between

ADMB and R have been used, for example, the glmmADMB, R2admb, and PBSadmb packages for

R and theADMB2R C++ interface. Similarly,ADMB users have expressed interest in developing

translators from BUGS (Bayesian inference Using Gibbs Sampling).

There have been relatively few comparisons of performance of ADMB to that of other sta-

tistical software packages. The work comparing ADMB and other software [57] is somewhat

out of date, very limited in scope and needs to be updated, but did show that ADMB performed

much more efficiently than other modelling tools [57] in situations without random effects. More

recently, Skaug and Fournier [61] compared ADMB to a number of statistical packages in a mixed

model setting. It was concluded that ADMB performs favourably compared to the SAS procedure

NLMIXED, which offers the same level of flexibility as ADMB (within a limited class of random

effects models), and hence constitutes the most direct comparison.

The speed at which ADMB reaches solutions to estimation problems is one of the features

that attracts users. A top priority for future development is parallel processing, which will

246 Fournier et al.

further improve performance. Many users are also attracted to ADMB for its MCMC capability.

Improvement of the MCMC algorithms to increase both speed and accuracy have also been flagged

as a development priority.

In summary, the advantages of ADMB over other statistical packages gained by the use of AD

include:

(1) Flexibility. The user is free to define any desired model rather than being limited to a set of

predefined models. Indeed, any C++ program can be written within ADMB.

(2) Speed. AD, the optimizer and the specialized adjoint code for key functions can make the

difference between waiting hours versus seconds for model convergence.

(3) Precision. AD calculates the derivatives as accurately as analytical derivatives (to machine

precision).

(4) Quantification of uncertainties. With almost no extra effort by the user AD Model builder

produces several different estimates of the uncertainties of model parameters and selected

derived quantities.

In addition, the generic implementation of optimization, Laplace approximation, importance

sampling, MCMC, profile likelihood and estimation of the variance–covariance matrix for esti-

mated parameters and derived quantities allows these to be applied to the desired model rather than

limiting the analysis to specific models or forcing the analyst to make simplifying assumptions.

Acknowledgements

We thank the Gordon and Betty Moore Foundation for the financial support to begin the ADMB open source project and
the National Oceanic and Atmospheric Administration for the ongoing financial support. We also thank Kevin Weng of
the University of Hawaii Pelagics Fisheries Research Program and Mark Schildhauer of the University of California at
Santa Barbara National Center for Ecological Analysis and Synthesis for logistical support. This paper was funded in
part by Cooperative Agreement NA17RJ1230 between the Joint Institute for Marine and Atmospheric Research and the
National Oceanic and Atmospheric Administration. Views expressed in this paper do not necessarily represent the views
of these agencies, their subagencies, or their member countries. Finally, we thank the following persons for giving useful
comments on the manuscript: James Bence, Cleridy Lennert-Cody, Lennart Frimannslund, Allan Hicks, Tore Selland
Kleppe, Kasper Kristensen and Ian Taylor.

Notes

1. For a brief history of ADMB, see http://en.wikipedia.org/wiki/ADMB
2. http://www.opensource.org/licenses/bsd-license.php
3. http://subversion.apache.org/
4. http://buildbot.net
5. http://doxygen.org

References

[1] ADMB Project, An introduction to AD Model Builder for use in nonlinear modeling and statistics, Version 9.0.0,
ADMB Foundation, Honolulu, HI, 2008.

[2] ADMB Project, AUTODIF: A C + + array language extension with automatic differentiation for use in nonlinear

modeling and statistics, ADMB Foundation, Honolulu, HI, 2008.
[3] ADMB Project, Random effects in AD Model Builder: ADMB-RE user guide, ADMB Foundation, Honolulu, HI,

2009.
[4] Z.T. A’mar, A.E. Punt, and M.W. Dorn, The impact of regime shifts on the performance of management strategies

for the Gulf of Alaska walleye pollock (Theragra chalcogramma) fishery, Can. J. Fish. Aquat. Sci. 66 (2009), pp.
2222–2242.

[5] B. Bell, Approximating the marginal likelihood estimate for models with random parameters, Appl. Math. Comput.
119 (2001), pp. 57–75.

[6] C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland, ADIFOR—generic derivative codes from Fortran

programs, Sci. Program. 1 (1992), pp. 1–29.

Optimization Methods & Software 247

[7] B. Bolker, Using AD Model Builder and R together: Getting started with the R2admb package; software manual
available at http://r-forge.r-project.org/projects/r2admb/.

[8] T. A. Branch, K. Matsuoka, and T. Miyashita, Evidence for increases in Antarctic blue whales based on Bayesian

modelling, Mar. Mam. Sci. 20 (2004), pp. 726–754.
[9] P.A. Breen, R. Hilborn, M.N. Maunder, and S.W. Kim, Effects of alternative control rules on the conflict between a

fishery and a threatened sea lion (Phocarctos hookeri), Can. J. Fish. Aquat. Sci. 60 (2003), pp. 527–541.
[10] K. Broms, J.R. Skalski, J.J. Millspaugh, C.A. Hagen, and J.H. Schulz, Using statistical population reconstruction

to estimate demographic trends in small game populations, J. Wildl. Manage. 74 (2010), pp. 310–317.
[11] B.P. Carlin and T.A. Louis, Bayes and Empirical Bayes Methods for Data Analysis, Chapman & Hall, London, 1996.
[12] G. Cui, A.E. Punt, L.A. Pastene, and M. Goto, Bayes and Empirical Bayes approaches to addressing stock structure

questions using mtDNA data, with an illustrative application to the North Pacific minke whales, J. Cetacean Res.
Manage. 4 (2002), pp. 123–134.

[13] E. Edeline,A. Le Rouzic, I.J. Winfield, J.M. Fletcher, J.B. James, N.C. Stenseth, and L.A.Vøllestad, Harvest-induced

disruptive selection increases variance in fitness-related traits, Proc. R. Soc. B 276 (2009), pp. 4163–4171.
[14] E.P. Fenichel and R.D. Horan, Gender-based harvesting in wildlife disease management, Am. J. Agr. Econ. 89

(2007), pp. 904–920.
[15] J.R. Fieberg, K.W. Shertzer, P.B. Conn, K.V. Noyce, and D.L. Garshelis, Integrated population modeling of black

bears in Minnesota: Implications for monitoring and management, PLoS ONE 5 (2010), e12114.
[16] D. Fournier and I. Doonan, A length-based stock assessment method utilizing a generalized delay-difference model,

Can. J. Fish. Aquat. Sci. 44 (1987), pp. 422–437.
[17] D. Fournier and A. Warburton, Evaluating fisheries management models by simulated adaptive control-introducing

the composite model, Can. J. Fish. Aquat. Sci. 46 (1989), pp. 1002–1012.
[18] D.A. Fournier, J. Hampton, and J.R. Sibert, MULTIFAN-CL: A length-based, age-structured model for fisheries stock

assessment, with application to South Pacific albacore, Thunnus alalunga, Can. J. Fish. Aquat. Sci. 55 (1998), pp.
2105–2116.

[19] D. Fournier, J. Sibert, J. Majkowski, and J. Hampton, MULTIFAN: A likelihood-based method for estimating growth

parameters and age composition from multiple length frequency data sets illustrated using data for southern bluefin

tuna (Thunnus maccoyii), Can. J. Fish. Aquat. Sci. 47 (1990), pp. 301–317.
[20] D.M. Gay, More AD of nonlinear AMPL models: Computing Hessian information and exploiting partial separability,

in Computational Differentiation: Techniques, Applications, and Tools, M. Berz, C. Bischof, G. Corliss, and A.
Griewank, eds., SIAM, Philadelphia, PA, 1996, pp. 173–184.

[21] A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin, Bayesian Data Analysis, Chapman & Hall, London, 1995.
[22] A. Griewank, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, SIAM, Philadelphia,

PA, 2000.
[23] A. Griewank and G.F. Corliss (eds.), Automatic Differentiation of Algorithms: Theory, Implementation, and

Application, SIAM, Philadelphia, PA, 1992.
[24] A. Griewank, D. Juedes, and J. Utke, ADOL-C: A package for the automatic differentiation of algorithms written in

C/C + +, ACM Trans. Math. Softw. 22 (1996), pp. 131–167.
[25] J. Hampton and D.A. Fournier, A spatially disaggregated, length-based, age-structured population model of yellowfin

tuna (Thunnus albacares) in the western and central Pacific Ocean, Mar. Freshw. Res. 52 (2001), pp. 937–963.
[26] L. Hascoët and V. Pascual, TAPENADE 2.1 user’s guide, Tech. Rep. 300, INRIA, Sophia Antipolis, France, 2004.
[27] R. Hilborn, M. Maunder, A. Parma, B. Ernst, J. Payne, and P. Starr, Coleraine: A generalized age-structured stock

assessment model, Version 2.0, Rep. SAFS-UW-0116, University of Washington, Seattle, 2003.
[28] K.N. Holland, R. Brill, R. Chang, J. Sibert, and D. Fournier, Physiological and behavioural thermogregulation in

bigeye tuna (Thunnus obesus), Nature 358 (1992), pp. 410–412.
[29] G.W. Holtgrieve, D.E. Schindler, T.A. Branch, and Z.T. A’mar, Simultaneous quantification of aquatic ecosystem

metabolism and reaeration using a Bayesian statistical model of oxygen dynamics, Limnol. Oceanogr. 55 (2010),
pp. 1047–1063.

[30] S.D. Hoyle and M.N. Maunder, A Bayesian integrated population dynamics model to analyze data for protected

species, Anim. Biodiv. Cons. 27 (2004), pp. 247–266.
[31] S.W. Kim, I.L. Hudson, and M.R. Keatley, Modelling the flowering of four eucalypts species via MTDg with inter-

actions, in 18th World IMACS/MODSIM Congress, Cairns, Australia, 13–17 July 2009, Modelling and Simulation
Society of Australia and New Zealand, Canberra, 2009, pp. 2625–2631.

[32] T. Kitakado, S. Kitada, H. Kishino, and H.J. Skaug, An integrated-likelihood method for estimating genetic

differentiation between populations, Genetics 173 (2006), pp. 2073–2082.
[33] A. Le Rouzic, H.J. Skaug, and T.F. Hansen, Estimating genetic architectures from artificial-selection responses: A

random-effect framework, Theoret. Popul. Biol. 77 (2010), pp. 119–130.
[34] L.H. Liow, H.J. Skaug, T. Ergon, and T. Schweder, Global occurrence trajectories of microfossils: Environmental

volatility and the rise and fall of individual species, Paleobiology 36 (2010), pp. 224–252.
[35] A. Lunde, K.K. Melve, H.K. Gjessing, R. Skjærven, and L.M. Irgens, Genetic and environmental influences on birth

weight, birth length, head circumference, and gestational age by use of population-based parent-offspring data,
Amer. J. Epidemiol. 165 (2007), pp. 734–741.

[36] A. Magnusson, ADMB-IDE: Easy and efficient user interface, ADMB Foundation Newsl. 1(3) (2009), pp. 1–2.
[37] A. Magnusson and R. Hilborn, What makes fisheries data informative? Fish and Fish. 8 (2007), pp. 337–358.
[38] J.L. Martin, M.H. Prager, and A. Stephens, User’s guide to ADMB2R: A set of AD Model Builder output routines

compatible with the R statistics language, Tech. Memo. NMFS-SEFSC-546, NOAA, Miami, FL, 2006.

248 Fournier et al.

[39] M.N. Maunder, A general framework for integrating the standardization of catch per unit of effort into stock

assessment models, Can. J. Fish. Aquat. Sci. 58 (2001), pp. 795–803.
[40] M.N. Maunder, Converting WinBUGS into ADMB, ADMB Foundation Newsl. 2(1) (2010), pp. 3–6.
[41] M.N. Maunder and G.M. Watters, A-SCALA: An age-structured statistical catch-at-length analysis for assessing

tuna stocks in the eastern Pacific Ocean, Inter-Am. Trop. Tuna Comm. Bull. 22 (2003), pp. 433–582.
[42] M.N. Maunder, M.G. Hinton, K.A. Bigelow, and A.D. Langley, Developing indices of abundance using habitat data

in a statistical framework, Bull. Mar. Sci. 79 (2006), pp. 545–559.
[43] M.N. Maunder, J. Schnute, and J. Ianelli, Computers in fisheries population dynamics, in Computers in Fisheries

Research, B.A. Megrey and E. Moksness, eds., Springer, New York, 2009, pp. 337–372.
[44] M.N. Maunder, H.J. Skaug, D.A. Fournier, and S.D. Hoyle, Comparison of estimators for mark-recapture mod-

els: Random effects, hierarchical Bayes, and AD Model Builder, in Modeling Demographic Processes in Marked

Populations, D.L. Thomson, E.G. Cooch, and M.J. Conroy, eds., Springer, New York, 2009, pp. 917–948.
[45] R.D. Methot Jr., Stock assessment: Operational models in support of fisheries management, in The Future of Fisheries

Science in North America, R.J. Beamish and B.J. Rothschild, eds., Springer, New York, 2009, pp. 137–165.
[46] R. Meyer, D. Fournier, and A. Berg, Stochastic volatility: Bayesian computation using automatic differentiation and

the extended Kalman Filter, Econom. J. 6 (2003), pp. 408–420.
[47] R.M. Neal, An improved acceptance procedure for the hybrid Monte Carlo algorithm, J. Comput. Phys. 111 (1994),

pp. 194–203.
[48] A. Nielsen and J. Sibert, State space model for light based tracking of marine animals, Can. J. Fish. Aquat. Sci. 64

(2007), pp. 1055–1068.
[49] P.P. Olea and P. Mateo-Tomás, The role of traditional farming practices in ecosystem conservation: The case of

transhumance and vultures, Biol. Conserv. 142 (2009), pp. 1844–1853.
[50] A.M. Parma, Bayesian approaches to the analysis of uncertainty in the stock assessment of Pacific halibut, in

Incorporating Uncertainty into Fishery Models, J.M. Berkson, L.L. Kline, and D.J. Orth, eds., American Fisheries
Society, Bethesda, MD, 2002, pp. 113–136.

[51] J. Paulsen, A. Lunde, and H.J. Skaug, Fitting mixed-effects models when data are left truncated, Insurance: Math.
Econ. 43 (2008), pp 121–133.

[52] A.E. Punt and R. Hilborn, Bayesian Stock Assessment Methods in Fisheries: User’s Manual, Comput. Inf. Ser. Fish.
12, FAO, Rome, 2001.

[53] A.E. Punt and A.D.M. Smith, Harvest strategy evaluation for the eastern stock of gemfish (Rexea solandri), ICES J.
Mar. Sci. 56 (1999), pp. 860–875.

[54] A.E. Punt, A.D.M. Smith, and G. Cui, Evaluation of management tools for Australia’s South East Fishery 2: How

well can management quantities be estimated?, Mar. Freshw. Res. 53 (2002), pp. 631–644.
[55] J. Schnute and R. Haigh, User’s guide to the R package PBSadmb; software manual available at http://pbs-

admb.googlecode.com/files/PBSadmb-UG.pdf.
[56] J. Schnute, M.N. Maunder, and J. Ianelli, Designing tools to evaluate fishery management strategies: Can the

scientific community deliver?, ICES J. Mar. Sci. 64 (2007), pp. 1077–1084.
[57] J.T. Schnute, L.J. Richards, and N. Olsen, Statistics, software, and fish stock assessment, in Fishery Stock Assessment

Models, F. Funk, T.J. Quinn II, J. Heifetz, J.N. Ianelli, J.E. Powers, J.F. Schweigert, P.J. Sullivan, and C.I. Zhang,
eds., Sea Grant Program, Fairbanks, 1998, pp. 171–184.

[58] I. Senina, J. Sibert, and P. Lehodey, Parameter estimation for basin-scale ecosystem-linked population models of

large pelagic predators: Application to skipjack tuna, Progr. Oceanogr. 78 (2008) 319–335.
[59] J. Sibert, J. Hampton, D. Fournier, and P. Bills, An advection-diffusion-reaction model for the estimation of fish

movement parameters from tagging data, with application to skipjack tuna (Katsuwonus pelamis), Can. J. Fish.
Aquat. Sci. 56 (1999), pp. 925–938.

[60] S.P. Smith, Differentiation of the Cholesky algorithm, J. Comput. Graph. Stat. 4 (1995), pp. 134–147.
[61] H. Skaug and D. Fournier, Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models,

Comput. Stat. Data Anal. 56 (2006), pp. 699–709.
[62] H. Skaug, D. Fournier, A. Nielsen, and A. Magnusson, Package glmmADMB: Generalized linear mixed models using

AD Model Builder; software available at vailable at http://r-forge.r-project.org/projects/glmmadmb/.
[63] H.J. Skaug, L. Frimannslund, and N. Øien, Historical population assessment of Barents Sea harp seals (Pagophilus

groenlandicus), ICES J. Mar. Sci. 64 (2007), pp. 1356–1365.
[64] H.J. Skaug, N. Øien, T. Schweder, and G. Bøthun, Abundance of minke whales (Balaenoptera acutorostrata) in the

Northeastern Atlantic, Can. J. Fish. Aquat. Sci. 61 (2004), pp. 870–886.
[65] V. Trenkel and H.J. Skaug, Disentangling the effects of trawl efficiency and population abundance on catch data

using random effects models, ICES J. Mar. Sci. 62 (2005), pp. 1543–1555.

Optimization Methods & Software 249

Appendix: A selection of major applications of the AUTODIF Library and AD Model

Builder

Model Model class Reference

Coleraine Stock assessment Hilborn et al. [27]
Stock Synthesis Stock assessment Methot [45]
MULTIFAN-CL Stock assessment Fournier et al. [18]
stockassessment.org Online stock assessment tool
SEAPODYM Ecosystem and tuna population dynamics Senina et al. [58]
TAGEST Large-scale tuna diffusion and mortality Sibert et al. [59]
TRACKIT Electronic tag track reconstruction Nielsen and Sibert [48]

