
ADMB Getting Started Guide

DRAFT FOR REVIEW

October 2009

Contents

1 What is AD Model Builder? 5
1.1 Features . 7
1.2 About this Document . 8
1.3 Additional Resources . 8

2 Installation 11
2.1 System requirements . 11
2.2 Installing ADMB . 12

2.2.1 Windows . 12
2.2.2 Linux . 16

3 Working with AD Model Builder 19
3.1 Opening AD Model Builder 19
3.2 Overview: From question to result 20

4 Creating a program: The template 23
4.1 Data section (and data file) 23
4.2 Parameter section (and initial parameter values file) 28
4.3 Procedure section . 32
4.4 Non-required template sections 33

5 Compiling and running a program 39
5.1 Compiling a program . 39
5.2 Running a program and command-line options 40
5.3 Errors, debugging, and memory management 41

6 The results: AD Model Builder output files 45
6.1 Parameter estimate file (.par) 46
6.2 Standard deviation report file (.std) 47
6.3 Correlation matrix file (.cor) 47

3

6.4 User-defined output file (.rep) 48
6.5 Outputting results for R . 48

7 Examples 51
7.1 Example 1: Least-squares regression 51

7.1.1 Using sum of squares 52
7.1.2 Using matrix algebra with sum of squares 54
7.1.3 Standard Deviation Report (.std) 55

7.2 Example 2: Nonlinear regression with MLE: Fitting a Von
Bertalanffy growth curve to data 57
7.2.1 Using phases and bounds 60
7.2.2 Plotting the results using R 63

7.3 Example 3: A simple fisheries model: estimating parameters
and uncertainty . 67
7.3.1 Maximum likelihood estimate (fish.tpl) 69
7.3.2 Likelihood Profile and Bayesean posterior analysis . . 72
7.3.3 Report: Profile likelihood report (.plt) 77
7.3.4 Report: Markov Chain Monte Carlo (MCMC) report

(.hst) . 79
7.4 Example 4: Simulation testing 80

7.4.1 Simulating data: Generating random numbers 80
7.4.2 Simulation testing: Estimating plant yield per pot

from pot density . 82

8 Useful operators and functions 87
8.1 Useful ADMB Functions . 87
8.2 Useful Vector Operations . 88
8.3 Useful Matrix Operations . 90

4

Chapter 1

What is AD Model Builder?

AD Model Builder (ADMB) is a free software package designed to help
ecologists and others develop and fit complex nonlinear statistical models
(Figure 1.1). Offering support for numerous statistical techniques, such as
simulation analysis, likelihood profiles, Bayesian posterior analysis using a
Markov Chain Monte Carlo (MCMC) algorithm, numerical integration, and
mixed-effect modeling, the software is well suited for computationally in-
tensive applications. For example, ADMB has been used to fit complex
nonlinear models with thousands of parameters to multiple types of data, as
well as to fit nonlinear models with fewer parameters to hundreds of thou-
sands of data points. With ADMB, it is also relatively simple to create
and process nonlinear mixed models (i.e., models that contain both fixed
and random effects). ADMB combines a flexible mathematical modeling
language (built on C++) with a powerful function minimizer (based on Au-
tomatic Differentiation) that is substantially faster and more stable than
traditional minimizers, which rely on finite difference approximations. Au-
tomatic differentiation can make the difference between waiting hours and
waiting seconds for a converging model fit, and its use in ADMB provides
fast, efficient and robust numerical parameter estimation.

Users interact with the application by providing a simple description of
the desired statistical model in an ADMB template. Once the specification
is complete (and compiled and run using a few simple commands), ADMB
fits the model to the data and reports the results automatically. ADMB
does not produce any graphical output, but the output files can be easily
brought into standard packages like Excel or R for analysis.

The software’s template-based interface allows scientists to specify mod-
els without the need for an in-depth knowledge of C or C++ (though some

5

Figure 1.1: Examples of Linear and Nonlinear models

knowledge of C syntax and programming is required, and users must have
a coherent model and a data set in mind before creating a template). The
template interface also allows users to construct any desired model (rather
than selecting one from a set of predefined models, which is standard in other
statistical environments, such as R). Note that ADMB users are required to
construct a model; the software does not provide a predefined list of stan-
dard models to choose from. In addition, experienced C++ programmers
can create their own C++ libraries, extending the functionality of ADMB
to suit their needs.

The software makes it simple to deal with recurring difficulties in non-
linear modeling, such as restricting parameter values (i.e., setting bounds),
optimizing in a stepwise manner (i.e., using phases), and producing stan-
dard deviation reports for estimated parameters. ADMB is also very useful
in simulation analysis, as the reduced estimation time provided by ADMB
can significantly reduce the amount of time required to evaluate the simu-

6

lation.
ADMB was developed by David Fournier in the early 1990s and is rooted

in one of the original C++ implementations of reverse mode automatic dif-
ferentiation, Fournier’s AUTODIF library. For more information about AU-
TODIF, please see the AUTODIF manual.

1.1 Features

AD Model Builder’s features include:

• A flexible template interface, which makes it easy to input and output
data from the model, set up the parameters to estimate, and set up
an objective function to minimize. Adding additional estimable pa-
rameters or converting fixed parameters into estimable parameters is
a simple process.

• A set of C++ libraries that can be used in conjunction with user-
created libraries to extend ADMB functionality

• An efficient and stable function minimizer that uses automatic differ-
entiation for exact derivatives

• Support for matrix algebra (e.g., vector-matrix arithmetic and vector-
ized operations for common mathematical functions), which uses less
computation time and memory than traditional programmatic loops

• Support for nonlinear, mixed effects models

• Support for simulation analysis

• Likelihood profile generation

• Automated estimates of the variance-covariance matrix, and (option-
ally) the variance of any model variable

• An MCMC algorithm (Metropolis-Hastings) for Bayesian integration
that uses efficient jumping rules based on the estimated variance-
covariance matrix

• Support for parallel processing, which allows a single model to be
estimated using multiple processes

• Support for bounds to restrict the range of possible parameter values

7

• Support for using phases to fit a model

• Support for high-dimensional and ragged arrays

• Random number generation

• Random effects parameters (implemented using Laplace’s approxima-
tion)

• A “safe mode” compiling option for bounds checking

• Support for Dynamic Link Libraries (DLLs) with other Windows pro-
grams (e.g., R, Excel, Visual Basic). For example, an ADMB program
can be created and called from R as though it were part of the R
language.

1.2 About this Document

This is an introductory guide designed to introduce users to AD Model
Builder. This document can be downloaded from
https://code.nceas.ucsb.edu/code/projects/admb-docs/. Templates and as-
sociated data and parameter files for all of the examples can be downloaded
from https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/

1.3 Additional Resources

To learn more about AD Model Builder, please see the following references:

• AD Model Builder Manual
http://admb-project.googlecode.com/files/admb.pdf
The AD Model Builder manual contains details about installing and
using AD Model Builder for advanced statistical applications. The
manual highlights a number of example programs from various fields,
including chemical engineering, natural resource modeling, and finan-
cial modeling.

• AUTODIF Library Manual
http://admb-project.googlecode.com/files/autodif.pdf

8

https://code.nceas.ucsb.edu/code/projects/admb-docs/LATEXFiles/ADMBGettingStarted.pdf
https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/
http://admb-project.googlecode.com/files/admb.pdf
http://admb-project.googlecode.com/files/autodif.pdf

AUTODIF is fully integrated into AD Model Builder, and users auto-
matically take advantage of its powerful automatic differentiation func-
tionality to lend speed and stability to statistical analyses. This man-
ual contains more information about the AUTODIF C++ libraries,
including details about the AUTODIF function minimizing routines,
working with random numbers, and supported operations and func-
tions. The manual also includes a number of useful examples.

• Random effects in AD Model Builder: ADMB-RE user guide
http://admb-project.googlecode.com/files/autodif.pdf
The ADMB-RE user’s guide provides a concise introduction to random
effects modeling in AD Model Builder. The guide includes background
information about random effects modeling as well as a number of use-
ful examples. Additional examples can be found in the online example
collection: http://www.otter-rsch.com/admbre/examples.html

• Mailing List
To participate in discussions about problems and solutions using ADMB,
please join the ADMB User Mailing List:
http://lists.admb-project.org/mailman/listinfo/users
Archives of past discussions are available at:
http://lists.admb-project.org/pipermail/users/

• Support
For general questions about the ADMB project, please contact support@admb-
project.org. Additional information, including recent ADMB news and
links to community resources can be found at:
http://admb-project.org/community.

9

http://admb-project.googlecode.com/files/autodif.pdf
http://www.otter-rsch.com/admbre/examples.html
http://lists.admb-project.org/mailman/listinfo/users
http://lists.admb-project.org/pipermail/users/
mailto:support@admb-project.org
mailto:support@admb-project.org
http://admb-project.org/community

10

Chapter 2

Installation

To download and install ADMB, please go to the ADMB Download page:
http://admb-project.org/downloads.

2.1 System requirements

ADMB runs on both Windows and Linux systems. A Mac version is cur-
rently under development—a release candidate is available from the ADMB
download page.

Program Requirements:

• A C++ compiler (for Windows: MinGW GCC, Visual C+, or Borland
5.5.1) and the Make application. Be sure to download the correct ver-
sion of ADMB for your platform and compiler. The Windows installer
is bundled with a MinGW compiler and we recommend downloading
and installing this version of ADMB if you do not have a compiler
installed already.

• A text editor for working with templates. Though you can use Notepad
or Wordpad, we recommend that you use a more robust (free) text
editor, such as ConTEXT or Crimson (for Windows) or jEdit (for
Window, Linux, Mac). These editors support syntax highlighting and
other useful coding features. For a list of recommended editors, please
see http://admb-project.org/community/editing-tools

Hardware Requirements:

11

http://admb-project.org/downloads
http://admb-project.org/community/editing-tools

• ADMB includes about 4 MB of C++ libraries. Hard disk requirements
depend on the C++ compiler used.

• Memory requirements are dependent on size of model.

2.2 Installing ADMB

AD Model Builder is available for Windows and Linux, and a beta version
is also available for the Mac. Please see the admb-project.org site for more
information about downloading and installing ADMB for the Mac.

2.2.1 Windows

In this section, we provide instructions for downloading and installing ADMB
with MinGW, which uses the free gcc and g++ compilers. We recommend
that you use this configuration, unless you already like and use the Microsoft
or Borland compilers. Note that the installation file includes the MinGW
compiler and the Make application, which are required to run ADMB. If you
already have a compiler installed, you may wish to install one of the binary
versions of ADMB. See the admb-project.org site for more information.

The following instructions are for the recommended ADMB and MinGW
installation:

1. Download and save the ADMB-MinGW installer (23.2 MB) that in-
cludes the compiler and tools. This version is found under “Window
(32 bit only)” on the download page: http://admb-project.org/downloads.
The installation wizard will install all the necessary tools for running
ADMB.

2. Double-click the downloaded installer and click “Run” to open the
Setup wizard.

12

http://admb-project.org
http://admb-project.org/downloads

3. Accept the license agreement and click “Next”.

4. Chose to install ADMB into the default directory, “C:\ADMB\MinGW”

13

5. Chose to create a program shortcut “ADMB (MinGW GCC 3.4)” in
the Start Menu Folder.

6. Review the installation settings and click “Install” to install ADMB.

14

The wizard will alert you when the installation is complete. Click
“Finish” to exit the wizard.

7. Check that the installation is working correctly. From the Start menu,
select “ADMB (MinGW)” and then “ADMB Command Prompt (MinGW)”

8. In the ADMB Command Prompt window, type “make” to build and
run a suite of ADMB tests.

9. If the run is successful, the last two lines of output should appear as
below:

15

If you encounter any problems, please send an exact copy of your error
message to “help@nceas.ucsb.edu”. Please include information about
your platform, operating system, and which version of ADMB you are
using.

2.2.2 Linux

ADMB for Linux systems uses the GNU open source gcc compiler, which is
used to build ADMB programs. To install ADMB on a Linux system:

1. Download and extract the ADMB Linux binaries from http://admb-
project.org/downloads. Note: to determine which gcc you have, type:
gcc --version
at the command line.

2. Open a bash shell and navigate to the directory into which you ex-
tracted the ADMB code (e.g., ~/admb):

$ cd ~/admb

3. Set the ADMB home directory with the following command

$ export ADMB HOME=~/admb

4. Add the ADMB bin directory to the $PATH:

$ export PATH=$ADMB HOME/bin:$PATH

5. Navigate to the ADMB Home directory:

16

http://admb-project.org/downloads
http://admb-project.org/downloads

cd $ADMB HOME

6. Type “make” to build and run a suite of ADMB test analyses.

$ make

Note that the analyses may take several minutes to compile and run.

If you encounter any problems, please send an exact copy of your error
message to “help@nceas.ucsb.edu”. Please include information about
your platform, operating system, and which version of ADMB you are
using.

17

18

Chapter 3

Working with AD Model
Builder

This chapter contains instructions for opening an installed version of AD
Model Builder and a high level overview of how the application works.

3.1 Opening AD Model Builder

To open AD Model Builder on a Windows system, select ADMB (MinGW
GCC 3.4) from the Start menu and then “ADMB Command Prompt (MinGW
GCC 3.4)”. Note that the menu items may be named differently depending
on the C compiler installed.

On a Linux system, open the ADMB program from the command line.

An ADMB Command Prompt window opens:

19

By default, you should be in the ADMB MinGW directory. To run a simple
example on a Windows system, navigate to the "examples/admb/simple"
directory and type “simple” at the command prompt:

To run the ’simple’ program on a Linux system, type ‘./simple’ at the
command line.

3.2 Overview: From question to result

If you have a data set and a question about it (how well the data fits a
model, for example), you are ready to begin using AD Model Builder. By

20

using command-line tools and a template file created with a standard text
editor, users specify an analytical model, read in data and initial parameter
values, and compile and execute a program that performs the analysis. AD
Model Builder automatically calculates and outputs the results.

The template file is designed to simplify the process of specifying a model.
Instead of writing a C or C++ program to carry out the required calcula-
tions, users simply supply data and declare the parameters that should be
estimated using straightforward ADMB conventions, and write code that
expresses the mathematical model. Templates are designated with a .tpl
extension. Once finished, the template is converted to true C++ code, com-
piled, and linked to the ADMB libraries.

Data and initial parameter values are provided via text files (designated
with .dat and .pin filename extensions, respectively). By default, AD Model
Builder looks for input files that match the program name. For example,
when running a program called ‘rabbits.exe’ (or ‘rabbits’, on a Linux sys-
tem), AD Model Builder automatically looks for data in rabbits.dat and
parameter values in rabbits.pin. This default behavior can be overridden
with command-line options.

After a program has executed, AD Model Builder writes the parameter
estimates, standard errors, a correlation matrix, and any user-specified re-
ports to output files, which are saved in the program directory. Output files
are named for the creating program. For a program called rabbits.exe (or
rabbits, on a Linux system), the parameter estimates can be found in rab-

21

bits.par, the correlation matrix in rabbits.cor and any user-specified reports
in rabbits.rep.

22

Chapter 4

Creating a program: The
template

The template simplifies the development of statistical analysis by hiding
many aspects of C++ programming. Using a template, users must only be
familiar with some of the simpler aspects of C or C++ syntax to create and
execute an ADMB program (see Section 8 for an overview of useful syntax,
functions, and operators).

The template itself is divided into several sections. For now, you need
only be concerned with the three required sections: DATA SECTION, PA-
RAMETER SECTION, and PROCEDURE SECTION, which we will look
at in more depth in this chapter.

As you work with the template (Figure 4.1), keep in mind that the file
will be translated into C++ code and then compiled.

Be careful to adhere to the following syntax requirements:

1. Indent using spaces (not tabs)

2. Template section names should be flush with the file margin

3. Use comments to describe and clarify the template. Comments are
designated with a “//” and may be used throughout the template.

4.1 Data section (and data file)

The data section is where you describe the structure of the data used by
the model. In general, all observational data read in from the data file and
all fixed values (i.e., values that are constant in the model and require no

23

Figure 4.1: A template file displayed with syntax coloring. Template files
have a .tpl filename extension.

derivative calculations) should be defined in the data section. You cannot
use a data object in the program until it has been defined.

Data can consist of integers or floating point numbers, which can be
grouped into one-dimensional arrays (e.g., a vector of measurements) and
two-dimensional arrays (e.g., a list of years with corresponding indices).
In addition, floating point numbers can be grouped into three and four-
dimensional arrays (Table 4.1). ADMB also supports ragged arrays.

Any data object prefixed with “init ” (e.g., “init number nobs” or “init vector
biomass(1,nobs)”) will be read in from the data file. Objects prefaced with
“init ” are read in from a data file in the order in which they are declared.
For example, if you define an integer (e.g., a number of observations) and
a vector containing observed population values, you must ensure that the
data file contains data in that order (Figure 4.2). Notice that once a data
object has been read in, its value can be used to describe a subsequent data
object. In the example in Figure 4.2, the number of observations (nobs) is
used to describe the size of the population-data vector.

Any data type without the init prefix is not initialized from the data
file.

Data files should not contain tabs and should include comments to clarify
the meaning of the data. Note that comments in data files are designated

24

Figure 4.2: The DATA SECTION of a template (left) and corresponding
data file (right).

with the # syntax. If you are creating a .dat file from Excel, we recommend
that you save the spreadsheet as a “Formatted text (space delimited)” file
(.prn), before converting it to a .dat file.

By default, ADMB will look for a data file with the same name as the
program. This default behavior can be overridden by adding a C command
to the data section, or by using the ‘-ind’ command-line option when run-
ning the program. We will look at examples of both options later in this
guide.

Table 4.1: Types of data objects in ADMB programs

Data object Definition and example

int
An integer. Example: init int nobs
In this example, “nobs” is the name of an integer data ob-
ject. Because the “init ” prefix is used, the value is read
from the data file.

number
Floating point number. Example: init number temp
In this example, “temp” is the name of a floating point num-
ber, the value of which is read from the data file.

ivector One-dimensional array (i.e., vector) of integers. Example:
init ivector years(1,5)

ivector

(cont’d)
The vector “years” has an initial index of 1 and a length
of 5 (e.g., “5,4,3,2,1”, where the first element, “5”, has an
index of 1, the second element, “4”, of 2, etc.). Often, vector
lengths are defined using values that are read from a data
file, such as a number of observations. For example:

Continued on next page

25

Table 4.1 – continued from previous page
Data object Definition and example

init ivector biomass(1,nobs)
In this case, the value ‘nobs’ must be defined before the
‘biomass’ ivector is declared. Please note that vector defi-
nitions cannot contain spaces.

vector error(1,NGROUPS + 1); //error
vector correct(1,NGROUPS+1); //correct

vector One-dimensional array (i.e., vector) of numbers. For exam-
ples, please see ivector, above.

imatrix
Two-dimensional array (i.e., matrix) of integers. Example:
init matrix dat(1,nobs,1,2)
In this example, ADMB reads a two-dimensional array of
integers (e.g., age and corresponding weight data) from the
data file. 1 is the initial index of the first dimension and
nobs specifies the length of the first dimension (e.g., the
number of observations). 1 and 2 identify the initial index
and length of the second dimension (the number of columns
of data). See Figure 4.5 at the end of the Chapter for an
example. For information about extracting a single column
of data from a two-dimensional array, see Figure 4.3.

matrix Two-dimensional array (i.e., matrix) of numbers. For exam-
ples, please see imatrix.

3darray Three-dimensional array of numbers. See Figure 4.6 at the
end of this Chapter for an example.

4darray Four dimensional array of numbers
Ragged array See Figure 4.7 at the end of this Chapter for an example

Note: Variable names are case-sensitive and must start with an alpha-
betical character. We recommend that you choose descriptive, short names
(e.g., length, mass, pop, nobs). You may use an underscore if you wish (e.g.,
fish mass). Do not use any words reserved by C++ (e.g., catch, if, else).

26

Tips and Tricks: Extracting a column of data from a data table

Extracting a column of data from a data table (e.g., a matrix) can be
done in the template’s DATA SECTION using the column() function. Note
that any standard C++ command can be used in the DATA SECTION
and/or the PARAMETER SECTION as long as it is preceded by !! and
concluded with a semi-colon, e.g.:

!!a=column(mytable,1);

To use the column() function, first read in the data from the data file
(Figure 4.3, Step 1). Define a vector to hold each extracted column of data

Figure 4.3: Using C code in the DATA SECTION to extract columns of
data.

(Step 2). Because the vector will hold data that has already been read into
AD Model Builder, you should not use the init prefix when defining it.
Once the vectors have been defined, use the !! syntax to insert the C++
command into the template (Step 3). In this example, the value of the ‘a’
vector becomes the age data (2,2,2,2,3,3,3,4,4,6) and the value of the ‘L’
vector the length data (1,3,4,4,3,4,5,6,9,10).

Note that you can also manipulate data using a LOCAL CALCS section
inside the DATA SECTION. Standard C++ commands and syntax are used
in the LOCAL CALCS section. For an example, please see the ADMB User

27

Manual.

4.2 Parameter section (and initial parameter val-
ues file)

The PARAMETER SECTION describes the structure of the model param-
eters. The section must include a line that defines the variable that will be
minimized (the objective function value). Often, this variable is set to
the value of a log-likelihood function, though it can be set to any function
that should be minimized. Any temporary variables or variables that are
functions of the declared parameters (such as the log of a parameter value)
should be defined in this section as well. Note: parameters that are fixed
throughout the program should be declared in the DATA SECTION, not
the PARAMETER SECTION.

The preface init indicates that the parameter will be given an initial value
and estimated in the minimization procedure. Initial parameter values are
specified in a .pin file. The order of the parameter values in the .pin file
must match the order in which the parameters are declared in the template
file. By default, AD Model Builder will look for parameter values in the .pin
file that shares the program name. The default behavior can be overridden
with a command line option when the program is run. Note: AD Model

28

Builder assigns default parameter values if no initial value is specified.

The PARAMETER SECTION pictured above defines two parameters,
a and b, both of which will be estimated by the program. The objec-
tive function value (f) is the value that will be minimized. In this case, the
sum of squares will be minimized. We will look at this example in more
detail in Section 7.1.1. For now, it is only important to note the syntax and
content of the PARAMETER SECTION.

By setting bounds on parameter values and/or estimating parameter
values in phases (see Tables 4.2 and 4.3 at the end of this section), template
designers can make their analyses more efficient and accurate. Bounds on the
estimated parameters stop their values from going outside a realistic range.
Phases allow for the preliminary estimation of the parameters that have a
large influence on the overall results before estimating the parameters that
have a small influence on the model. This technique is similar to producing
good starting values for the estimation process, which helps streamline the
estimation procedure. In addition, model parameters can be fixed at their
initial values if necessary.

AD Model Builder will also automatically generate a standard error
report or a likelihood profile (when the program is run with the -lprof
command-line option) for designated parameters. Note that standard error
is automatically calculated and reported for all parameters declared with
init . Use the prefix sdreport when defining a parameter to generate a
standard error report. Use the likeprof prefix to indicate that a likelihood
profile should be generated. See Section 7 for examples.

Parameters can be initialized in one of three ways: (1) via a .pin file,
(2) in the template’s (optional) INITIALIZATION SECTION, or (3) in the
template’s PRELIMINARY CALC SECTION. If a parameter is not initial-
ized in any of these ways, ADMB will assign it an initial default value—either
0 or (if the parameter is bounded) the midpoint of the defined interval. Be-
cause using a .pin file is the most common way to initialize parameter values,
we will look at using .pin files here. For more information about initializing
parameter values in the PRELIMINARY CALC SECTION, please see the
User Manual.

The .pin file is much like the data file (.dat), except that it is used to
store initial parameter values. The initial parameter values specified in the
.pin file must appear in the same order as the declared parameters.

29

Table 4.2: Single Parameters. All parameters are floating
point numbers.

Parameter
Type

Definition and example

Unbounded,
active parame-
ter

The most basic parameter type. Example:
init number a
These parameters will be given an initial value and estimated
in the minimization procedure. If no other initialization is
done in the program or via a .pin file, ADMB initializes the
value to zero.

Bounded,
active parame-
ter.

init bounded number a(0,1)
These parameters will be given an initial value and estimated
in the minimization procedure. The bounds specify a range
of valid values. In this example, ‘a’ can take values between
0 and 1. If no other initialization is done in the program or
via a .pin file, ADMB initializes the value to the mid-point
of the interval (in this example, .5).

Fixed parame-
ter

init number a(-1) or init bounded number a(0,1,-1)
Fixed parameters will not be estimated. To fix a parameter
at its initial value, add a ‘-1’ as shown above.

Parameter
optimized in
phases

init number a(2) or init bounded number b(0,1,3)
To estimate parameters in phases, specify the phase in which
the parameter should be active. In the above examples,
parameter a will be estimated in phase 2 and parameter b
will be optimized in phase 3. The value of a will remain
fixed in phase 1; the value of b will remain fixed in phases
1 and 2.

30

Table 4.3: Vectors of Parameters

Parameter
Type

Definition and example

Unbounded,
active vector
of parameters

init vector theta(1,3)
These parameters will be given an initial value and estimated
in the minimization procedure. If no other initialization is
done in the program or via a .pin file, ADMB initializes the
value to zero. The above example defines a vector with 3
elements and valid index from 1 to 3.

Bounded, ac-
tive vector

init bounded vector theta(0,5,-1,3)
These parameters will be given an initial value and estimated
in the minimization procedure. The bounds specify a range
of valid values. In the above example, the first two numbers
in the parenthesis (0,5) describe the vector dimensions. The
second two numbers (-1,3) indicate the parameter bounds.
If no other initialization is done in the program or via a
.pin file, ADMB initializes the value to the mid-point of the
interval (in this example, 1).

Fixed vector init vector theta(1,3,-1) or init bounded vector
theta(0,5,-1,3,-1)
Fixed parameters will not be estimated. To fix a parameter
at its initial value, add a ’-1’ as shown above.

Parameter
optimized in
phases

init vector theta(1,3,2) or init bounded vector
pop(0,5,-1,3,3)
To estimate parameters in phases, specify the phase in which
the parameter should be active. In the above examples, the
theta parameter will be estimated in phase 2 and the pop
vector will be optimized in phase 3. The value of theta will
remain fixed in phase 1; the value of pop will remain fixed
in phase 1 and 2.

Parameter
vector sum-
ming to zero

init bounded dev vector epsilon(1,5,-10,10,2)
A dev vector will be optimized so that it sums to zero.
The epsilon vector defined above has an initial index of
1, a length of 5, bounds between -10 and 10, and will be
optimized in phase 2.

31

4.3 Procedure section

The PROCEDURE SECTION contains the actual model calculations. The
lines in this section are written in C++ and must adhere to C++ syntax.
All normal C++ statements can be used in this section (e.g., if-then-else
statements) as well as operators, math library functions, and user-defined
functions. For a list of useful functions and operators, please see Section 8.

The code in the displayed PROCEDURE SECTION uses a for-loop to
cycle through each x and y value read in from the data file. Note that the

32

index for the first item in each vector is 1, not 0. The statement in the loop
(f+=pow(y(i)-(b+a*x(i),2);) uses the C++ incremental operator (+) to
add the squared difference between the observed and the estimated value.
Note the use of the pow(x,y) function, which raises the first argument,
y(i)-(b+a*x(i)) to the power specified in the second argument, 2. The
squared difference is set to the value of the objective function, which is
minimized by ADMB.

ADMB users often take advantage of predefined functions (e.g., sin,
cos, norm, etc.) in the PROCEDURE SECTION. To take the log of a pa-
rameter, for example, you could use the following line:

b=log(parameter);

Note that you must define both parameter and b in the PARAME-
TER SECTION before you can use this statement.

For a good list of supported functions, as well as information about
creating your own functions, please see the User Manual.

4.4 Non-required template sections

Although only three template sections are required (DATA SECTION, PA-
RAMETER SECTION, and PROCEDURE SECTION), AD Model Builder
templates have several optional sections, which you may come across as you
are working with AD Model Builder (Figure 4.4).

Use the INITIALIZATION SECTION to specify initial parameter val-
ues. Note that values specified here will be overridden by values specified in
a .pin file (if a .pin file is used).

The PRELIMINARY CALCS SECTION is often used to manipulate in-
put data—either to convert units (e.g., pounds to kilograms) or to convert
data structure (e.g., from matrix to vectors). The C++ statements used in
this section are executed only once, unlike the statements in the PROCE-
DURE SECTION, which are run once for each iteration of the minimization
routine. Instead of using a PRELIMINARY CALCS SECTION, users of-
ten choose to insert C++ commands into the DATA SECTION using the !!
syntax (see Section 4.1 for an example).

The REPORT SECTION is used to output user-defined results. Use
C++ syntax in this section. For more information and examples, please see
Section 6.4.

If you have some C code that you’d like to use, place it in the GLOB-

33

Figure 4.4: The twelve sections of an AD Model Builder template.

34

ALS SECTION. Any statements included in this section will be placed at
the top of the C++ file that is created from the template and then compiled.

The RUNTIME SECTION is used to control the behavior of the function
minimizer. It is often used to change the stopping criteria during the initial
phases of an estimation.

The BETWEEN PHASES SECTION contains code that will be exe-
cuted between estimation phases.

FUNCTION begins the definition of a function or “method” written in
C++ code.

35

Examples of data files and template DATA SECTION code:
1. Matrix Data (template declaration and data file)

Figure 4.5: An example of matrix data in an ADMB data file (right) and
the corresponding template declaration. In the above example, the first
dimension is the observations (i.e., the rows in the data set). The second
dimension is the years (i.e., the columns in the data set).

36

2. 3D-Array Data (template declaration and data file)

Figure 4.6: Example of 3D-array data and template declaration.

37

3. Ragged Array Data (template declaration and data file)

Figure 4.7: Example of ragged-array data and template declaration. In a
ragged array, the rows of data have different lengths.

38

Chapter 5

Compiling and running a
program

Once the template is finished, it needs to be translated to C++ and then
compiled and linked to the AD Model Builder libraries. All of these steps
can be done with a single command (makeadm). To run the compiled pro-
gram, simply type its name at the command line. On Linux systems, use
./programname Programs can be run with a number of options, which we
will look at in the next sections.

5.1 Compiling a program

To compile a program from the command line, open a command window (on
Windows) or a terminal window (on Linux) and navigate to the directory
that contains the template. At the command prompt, type:

C:\ADMBWork\test> makeadm templatename

In the above example, the template is stored in the C:\ADMBWork\test
directory (‘>’ is the command prompt). Type the name of the template
without its filename extension. For example, if the template file is named
“myprogram.tpl”, compile it by typing:

C:\ADMBWork\test> makeadm myprogram

If you are testing or debugging a template, you may wish to use the “safe
mode,” which performs bounds checking on all array objects. For example,

39

safe mode will notify you if an index value exceeds the permissible array
bounds (exceeding the bounds can produce calculation errors that may not
be detected otherwise). The safe mode is not as fast as the standard mode,
and should be used only for debugging—not for a final implementation. To
compile a template in safe mode, use a command like:

C:\ADMBWork\> makeadm myprogram -s

5.2 Running a program and command-line options

Use command-line options to modify the behavior of the program at run-
time. To see all available command-line options for a program, type the
program name followed by -?:

> simple -?

Table 5.1 contains information about some common command-line op-
tions. For a complete list of options and information about each, please see
Chapter 12 of the ADMB User Manual.

Table 5.1: Useful command-line options.

Command-line
option

Definition and example

-ind datafilename Change the name of the data file used by the pro-
gram. By default, the program will look for a
data file that shares its name. For example, a
program named ‘test.exe’ will look for a data file
named ‘test.dat’. To use a different data file, e.g.,
‘new.dat’, use the following:
> test -ind new.dat

Continued on next page

40

Table 5.1 – continued from previous page
Command-line
option

Definition and example

-ainp pinfilename Change the name of the PIN file used by the pro-
gram. By default, the program will look for a pin
file that shares its name. For example, a program
named ‘test.exe’ will look for initial parameter val-
ues in a file named ‘test.pin’. To use a different
data file, e.g., ‘new.pin’, use the following:
> test -ind new.pin

-? -help Both the ‘-?’ and ‘-help’ options will list all avail-
able command-line options.

-est Only estimate parameters. When this option is
used, ADMB will not generate a covariance ma-
trix or standard error report. Because this option
saves processing time, you may wish to use it when
developing models.

-lprof Perform likelihood profile calculations for any pa-
rameters designated with likeprof in the param-
eter section. Results are placed in a .plt file. For
an example, please see Section 7.3.3

-mcmc [N] Perform a Markov Chain Monte Carlo analysis with
N simulations. For an example, please see Section
7

5.3 Errors, debugging, and memory management

Syntax errors in AD Model Builder templates can cause troubles when the
template is converted to C++ and/or when the converted C+ code is com-
piled. You may see a message that ADMB cannot translate a template, or
that it cannot compile and link the program. Alternatively, the program
may build, but generate no output (or odd results) when it is run. You may
also receive messages about insufficient memory. In this section, we will look
at common types of errors and several troubleshooting techniques.

Many error messages contain a line number or the name of a problematic
function or variable. If you are on a Windows system, error messages relate
to the translated C++ file (e.g., the .cpp file, not the original .tpl template
file). Although you should track down the error in the .cpp file, remember
to make the fixes in the original template file.

41

Some common errors include:

1. Failing to place semi-colons at the end of a line (e.g., in a statement
in the PROCEDURE SECTION or other places where the template
uses C++ code)

2. Failing to specify the required objective function value in the PARAM-
ETER SECTION

3. Missing or mis-matched brackets ’{}’ around loop code or if-statements

4. Typos or inconsistent capitalization in variable names (‘Fish’ is not
the same as ‘fish’)

5. Errors reading in data (e.g., defining a number variable to hold array
data or declaring data variables in an order that differs from the data
values in the data file)

6. Failing to specify or incorrectly specifying initial parameter values

7. Using ‘=’ instead of ‘==’ when comparing two values for equality

When troubleshooting, it sometimes it helps to comment out sections of
code. To comment out code, simply place a “//” before each line:

//this code is commented.
//pred_Y=a*x+b;

You can also insert lines of code that print informative messages during
runtime. For example, insert a line like the following at the end of the
DATA SECTION to print the value of the last read data object and con-
firm that it is as expected:

!!cout<<"Last data object read "<<VARIABLE NAME <<endl;

The above command prints out the text enclosed between quotes as well
as the value of the specified variable (VARIABLE NAME). ‘endl’ indicates
a carriage return. (Figure 5.1)

You may also find that it is useful to work with a debugger. To use a
debugger, load the translated C++ file (.cpp) into a debugging environment,
such as MS Developer Studio.

42

Figure 5.1: Use C++ statements to output useful information at runtime.

43

Figure 5.2: Increasing the memory buffers.

As the number of estimable parameters in a model increases, the memory
required to process the calculations increases as well. If you see an error
message that relates to insufficient memory, you may need to increase the
memory buffers and/or make your template code more efficient.

To increase the memory buffers, you can either:

1. Increase the buffers using the template’s TOP OF MAIN SECTION
(Figure 5.2)

2. Increase the buffers using command-line options (-cbs and/or -gbs,
for the CMPDIF BUFFER SIZE and the GRADSTACK BUFFER SIZE,
respectively)

For more details about memory buffers and creating efficient code, please
see the ADMB Memory Management document:
http://admb-project.org/community/tutorials-and-examples/memory-management

44

http://admb-project.org/community/tutorials-and-examples/memory-management

Chapter 6

The results: AD Model
Builder output files

ADMB outputs results to several useful output files, which are in ASCII
format and can be opened and viewed in a standard text editor:

• Parameter Estimate file (.par)

• Standard Deviation file (.std)

• Correlation Matrix file (.cor)

• User-Defined Output file (.rep)

In addition, users can choose to output results to additional, user-defined
and formatted files (for use in R, for example) or to the command window
at runtime.

Depending on the type of analysis run, AD Model Builder will also create
additional output files: a profile likelihood report (.plt); an MCMC posterior
distribution report (.hst) and a MCMC algorithm result report (.psv). For
more information about these reports, please see Chapter 7.

Table 6.1: ADMB Input and Output Files

File extension Definition
.tpl input main model specification
.dat input data
.pin input initial parameter values

Continued on next page

45

Table 6.1 – continued from previous page
Function Definition
.cpp C++ source code (translated from .tpl file)
.htp C++ header (translated from .tpl file)
.exe compiled c program
.par output parameter estimates
.bar output parameter estimates (binary format)
.std output parameter standard deviations
.cor output parameter correlation matrix
.plt output profile likelihood report
.hst output MCMC report containing observed distri-

bution
.psv output the parameter chain from MCMC (binary

format)
.rep output user-generated report
.eva output the eigenvalues of the Hessian (2nd deriva-

tives of minus the log-likelihood) function. If they
are all positive it indicates a minimum.

6.1 Parameter estimate file (.par)

The parameter estimate file contains the parameter estimates, the final ob-
jective function value, and the gradient (which should be close to zero)
(Figure 6.1). By default, the file shares the name of the program and uses
a .par filename extension.

In the parameter estimate file, parameter names are listed above their
estimated values, and are set off with a ‘#’.

Figure 6.1: An example of a .par file, which contains two parameter esti-
mates (for a and b).

Note that ADMB also creates a file with a .bar extension (e.g., myTest.bar)

46

that contains the parameter estimates in a binary file format.

6.2 Standard deviation report file (.std)

The standard deviation report contains the name of each estimated param-
eter, its estimated value, and its standard deviation (Figure 6.2). The file
shares the name of the program and uses a .std filename extension.

Figure 6.2: An example of a standard deviation report file (.std).

6.3 Correlation matrix file (.cor)

By default, ADMB estimates the standard deviations and the correlation
matrix for the estimated model parameters (Figure 6.3). These estimates
are output to a file with a .cor filename extension.

At the top of the file is the logarithm of the determinant of the hessian.
The name of the parameter is followed by its value and standard deviation.
The correlation matrix is included after the standard deviation.

Figure 6.3: An example of a correlation matrix file.

47

6.4 User-defined output file (.rep)

The report file (.rep) is used for user-defined output. Any calculated quan-
tity can be written to this report and formatted as desired via the RE-
PORT SECTION of the template. Any variables specified in the REPORT SECTION
will be output (Figure 6.4).

Figure 6.4: Using the template’s REPORT SECTION to output values to
the .rep file.

6.5 Outputting results for R

A number of useful tools have been created to help users work with ADMB
and R (http://www.r-project.org/). Many of these tools have been posted
to the Community section of the admb-project.org site:
http://admb-project.org/community/related-software/r

Packages include scapeMCMC, an R package for plotting multipanel
MCMC diagnostic plots; scape, an R package for plotting fisheries stock
assessment data and model fit; ADMB2R, which is used to read ADMB
output directly into R; and PBSadmb, which is used to organize and run

48

http://www.r-project.org/
http://admb-project.org/community/related-software/r

ADMB models from R.
A useful R-function that can read the contents of an ADMB report file

and store the contents in the form of a list object, is also included. For an
example using the R-function, please see Section 7.2.2.

49

50

Chapter 7

Examples

7.1 Example 1: Least-squares regression

The regression line displayed below is the ‘best fit’ line through a series of
graphed data points. The line shows the relationship between the X and Y
data, and can be used to predict the value of the dependent variable (Y)
based on the value of the independent variable (X).

51

The relationship between X and Y is linear and can be represented as:

Yi = aXi + b (7.1)

where a and b are constants (i.e., parameters) representing, respectively,
the slope and Y-intercept of the regression line. To estimate the parameters,
we can minimize the sum-of-squared differences between the observed and
predicted Y values. In other words, the slope and intercept of the regression
line is determined by minimizing the following:

n∑
i=1

(Yi − (axi + b))2 (7.2)

Throughout this documentation, we refer to the function that will be mini-
mized as the “objective function.”

In this section, we will look at how to create a template to perform a
simple linear regression: how to read in the X,Y data points, how to initialize
the required parameters (a and b), how to calculate the predicted Y values,
and how to specify the objective function for performing the regression. The
first example uses a for-loop to perform the analysis; the second uses the
more efficient matrix algebra supported by AD Model Builder.

7.1.1 Using sum of squares

In this example, we will determine the relationship between the distance
from the tide line (X) and the weight of algae collected from a six-inch
square plot (Y). The data set consists of ten observations, each collected
from a different point along the beach. The ADMB data file looks like this:

number of observations
10
observed Y values
1.4 4.7 5.1 8.3 9.0 14.5 14.0 13.4 19.2 18
observed x values
-1 0 1 2 3 4 5 6 7 8

52

https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/example1/linear.dat

The template (linear.tpl) for performing the analysis (we’ll go through it
step-by-step in a moment) looks like this:

The first thing the template must do is read in the data; this is done in
the DATA SECTION. Note that the order of declared variables must corre-
spond to the order of data in the data file:

The above template code creates an integer nobs, which is initialized to
the number of observations specified in the data file (10). The vectors y and
x are also created, and receive the y and x values, respectively. Note that
once declared, a variable can be used by subsequent lines of template code.
For example, nobs is used when specifying the length of the x and y vectors.

Parameters are declared in the PARAMETER SECTION:

53

https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/example1/linear.tpl

Here, a and b are declared as numbers. If no initial value for the pa-
rameters is supplied—as is the case in this example—ADMB will automat-
ically assign the parameters a default value. Every template must have an
objective function value, as well. In this case, the objective function
has been defined as f. The ADMB code for minimizing the sum of squares
is specified in the PROCEDURE SECTION:

The procedure code uses a for-loop to “cycle through” all ten observed
values. Notice that the objective function is specified using the pow() func-
tion, which is used to raise the first argument (y(i)-(b+a*x(i)) to the
power of the second argument (2). The ‘f+=’ syntax specifies addition
—each time the loop iterates, the new squared difference is added to the
cumulative sum. The code in the procedure section is iterated until AD
Model Builder determines the values of b and a that minimize the function.
Note that at the beginning of each iteration of the minimization routing,
the value of f is reset to 0.

Click to see the data file and template file used in this example.

7.1.2 Using matrix algebra with sum of squares

Matrix algebra, which is more efficient than the for-loop used in the previous
example, can be used in the regression. You need only make a few small
changes to the code:

In addition to the a and b parameters and the objective function, the
PARAMETER SECTION must also define a vector to contain predicted Y
values:

54

https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/example1/linear.dat
https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/example1/linear.tpl

And the PROCEDURE SECTION must be updated to use Matrix op-
erations:

When the code is executed, AD Model Builder will calculate the predicted
Y values and store them in the pred y vector; then the minimization is
performed using matrix algebra. Note that the square() function is used
to square its argument (pred y-y) and that the sum() function is used to
calculate the sum of the squares.

The full template (linearmatrix.tpl) looks like this:

Click to see the data file and template used in this example.

7.1.3 Standard Deviation Report (.std)

Process error, measurement error, and model specification error are three
important sources of uncertainty in models. Process uncertainty arises be-
cause biological processes vary; we may assume that birth rate is constant,
but it likely varies slightly from year to year in a way we can’t predict with
certainty. Observational uncertainty arises when we collect data: we may
count fifty rabbits, but we can’t be certain that we’ve accounted for the
entire population. Additionally, model specification error can arise because
of imprecision in estimated model parameters, which affects our ability to
make predictions using the model.

55

https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/example1/linearmatrix.tpl
https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/example1/linearmatrix.dat
https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/example1/linearmatrix.tpl

Prediction uncertainty can be explored by declaring any predicted quan-
tities of interest as sdreport variables in the PARAMETER section. Their
estimated standard deviations and correlations will then be computed and
reported in the .std and .cor output files.

The standard error is automatically calculated and reported for all pa-
rameters declared with init (e.g., a and b). To generate a standard error
report for a derived variable (in our example, the derived variable would
be the estimated weight of algae, pred y), declare the quantity of interest
(pred y) as a sdreport vector in the parameter section:

The standard deviation information will be reported in the *.std and
*.cor files. The first few lines of the simplematrix.std error report generated
by the above example are:

index name value std dev
1 a 4.0782e+000 3.5248e-001
2 b 1.9091e+000 7.7850e-002
3 pred y 2.1691e+000 4.1560e-001
4 pred y 4.0782e+000 3.5248e-001
5 pred y 5.9873e+000 2.9644e-001

...

The first few lines of the .cor report are:

The logarithm of the determinant of the hessian = 8.10168
index name value std dev 1 2 3 4

1 a 4.0782e+000 3.5248e-001 1.0000
2 b 1.9091e+000 7.7850e-002 -0.7730 1.0000
3 pred_y 2.1691e+000 4.1560e-001 0.9929 -0.8429 1.0000
4 pred_y 4.0782e+000 3.5248e-001 1.0000 -0.7730 0.9929 1.0000
...

56

Additionally, uncertainty for any parameter estimates or predicted quan-
tities can be further explored using profile likelihood and MCMC (see Section
7.3.3 for more details).

7.2 Example 2: Nonlinear regression with MLE:
Fitting a Von Bertalanffy growth curve to data

The von Bertalanffy growth function predicts the size of a fish as a function
of its age. Many fish species have growth-patterns that conform to this
model, though the individual curves will be flatter or steeper depending on
the values of the estimated parameters for each species’ data set.

The form of the growth curve is assumed to be:

Lt = L∞[1− e−K(t−t0)] (7.3)

where L∞ is the mean length of the oldest fish (i.e., the maximum length
for the species) and K dictates the shape of the curve—how quickly a fish’s
length approaches the maximum value. For example, a species with a life-
span of one year might have a high K-value (the length approaches the maxi-
mum length very rapidly), while a species that lives twenty years might have

57

a much lower K-value (and a flatter curve). The t0 parameter adjusts the
curve to account for the initial size at birth (which is usually not zero at age
zero).

In this section, we will look at how to estimate the L∞,K, and t0 pa-
rameters as well as the standard deviation using non-linear regression. In
this case, we will use maximum likelihood estimation instead of the Least
Squares Estimate (LSE) used in the previous example to calculate the most
likely parameter values. To use this method, we must minimize the negative
log-likelihood of the density function for the normal distribution. Note that
we will also use parameter bounds and phases to ensure that the regression
generates the best possible fit to the data.

A detailed discussion of maximum likelihood estimation is beyond the
scope of this document. However, we will provide a brief introduction to
the technique, which is a standard approach to parameter estimation and
has several benefits over LSE: it allows us to determine confidence bounds
on parameters, and it is a prerequisite to many other statistical methods,
including Bayesian methods and modeling random effects.

After we have collected data and come up with a hypothesis about it
(i.e., the von Bertalanffy model described above), we need to evaluate the
model to determine its “goodness of fit.” When we use a LSE method (as we
did in the first example), we attempt to best describe the data by minimizing
the difference between the observed and predicted values. When we use a
likelihood method, we instead ask the question: given my data, how likely
are the various hypotheses about the population from which it came? In
other words, maximum likelihood methods identify the parameter values
that are most likely to have produced the data rather than the ones that
most accurately describe the data sample in terms of how well it fits a model.

Likelihood may remind you of a related and perhaps more familiar con-
cept, probability. With probabilities, we know the population (e.g., a bowl
containing 20 red balls and 10 blue balls), and can calculate the probability
of any given sample (e.g., 2 red balls and 1 blue ball, or 1 red ball and 2
blue balls) based on that knowledge. With likelihood, we have a sample
(our data), and must come to the most likely conclusion about the popula-
tion from which the sample has been drawn (e.g., what is the mostly likely
conclusion we can make about the general population based on our sample
of 2 red balls and 1 blue ball?).

The likelihood of the data, given a hypothesis, is assumed to be propor-
tional to the probability. In fact, when we evaluate a likelihood, we use a
probability density distribution to identify the parameter vector that best

58

fits the model to the data. The desired probability distribution makes the
observed data “most likely.”

Which density distribution should be used (e.g., normal, binomial, etc.)
for an analysis depends on the nature of uncertainty in the model. For
example, if the data are categorical, the uncertainty may be described by a
multinomial distribution. Data that deviate from their average in a way that
follows a normal distribution can be described by the normal distribution.

Because likelihoods are often very small numbers, we use the logarithm of
the likelihood (the “log-likelihood”) when comparing hypotheses. Tradition-
ally, we choose to minimize the negative log-likelihood (rather than maximize
the log-likelihood), though either approach would provide the same result.

Likelihood for the normal distribution:

L (Θ|data) =
1√

2Πσ2
exp[−(O − P)2

2σ2] (7.4)

59

Negative log-likelihood:

−lnL (Θ|data) = 0.5ln(2Π) + ln(σ) +
(O − P)2

2σ2 (7.5)

Negative log-likelihood without constants, σ known:

−lnL (Θ|data) =
(O − P)2

2σ2 (7.6)

For a more thorough introduction to maximum likelihood methods, we
recommend The Ecological Detective by Ray Hilborn and Marc Mangel.

7.2.1 Using phases and bounds

The data used in this example consist of twenty observations of age and
length data. Observed ages range from 2 to 35 years. To see the data file
formatted for AD Model builder (vonb.dat), click here.

Initial parameter values are supplied in a .pin file named vonb.pin:

t0 (the size at birth is close to zero)
0
Linf (L∞, the maximum size is close to the maximum observed size)
21
K (the shape of the curve)
0.1
Standard Deviation
1

Note that if no initial parameter values are specified, AD Model Builder
will supply default initial values. The complete template (vonb.tpl)for per-
forming the regression is:

60

https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/example2/vonb.dat
https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/example2/vonb.pin
https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/example2/vonb.tpl

The data are read in and extracted with the code in the DATA SECTION:

The three model parameters: t0, Linf, k, as well as the standard de-
viation, sd, are defined at the top of the PARAMETER SECTION. Default
values are read and assigned from the .pin file. Note that the sd parameter
is defined as a bounded number, which means that its values will be con-
strained to fall between a lower and an upper bound, in this case, between
.01 and 10.

Placing bounds on variables ensures that their MLEs fall within a rea-
sonable range. Note that AD Model Builder does not “know” the limits of a
reasonable range unless you specify them. For example, the software might
identify that a parameter value that minimizes the negative log-likelihood
function is “-10”, which is mathematically valid, but not sensible in a situ-
ation where the value represents the length of a fish.

61

The third parenthetical value after the sd variable (the 2), represents the
phase in which the parameter will be estimated. AD Model Builder supports
“phased optimization,” in which additional parameters can be added and
optimized in a series of steps. In each phase, the parameters estimated in
the previous phase and the parameters activated in the current phase are all
estimated. The values from the previous phase are used as “initial values.”
You will likely wish to estimate influential parameters in the early phases
to avoid unrealistic parameter space. Relatively well known parameters can
be fixed until later phases. In this example, the standard deviation is not
estimated until the other model parameters have been “almost” estimated.
In other words, the analysis is performed in two phases: first the t0, Linf,
and k parameters are estimated (holding sd constant at its initial value),
and then the estimated values are adjusted as the standard deviation is
estimated in a second phase.

In general, the last number in the declaration of an initial parameter, if
present, determines the number of the phase in which that parameter be-
comes active. If no number is given, the parameter becomes active in phase
1. If you wished the sd parameter to be active in phase one, for example,
you could define it as: init bounded number sd(0.01,10). Alternatively,
if you wished to activate the t0 parameter in the second phase instead of
the first, you could define it as init number t0(2).

In addition to the parameters, an Lpred vector that will be used in the
PROCEDURE SECTION, as well as the (required) objective function, f,
are defined in the PARAMETER SECTION.

The PROCEDURE SECTION contains two lines. The first uses the
model and each set of parameter values generated and tested by AD Model
Builder to generate predicted length values. The mfexp() function raises
the number e to the power specified as the argument (-k*(a-t0)). Once
the predicted values have been generated, they are plugged into the negative
log-likelihood function in the second line, which is evaluated for each vector
of parameter values. AD Model Builder minimizes this objective function
and then returns the results in the output files.

62

The resulting .par file contains the following estimates:

Number of parameters = 4 Objective function value = -14.8033 Maximum
gradient component = 3.31725e-007
t0:
0.929195941003
Linf:
22.1727271642
k:
0.113188254800
sd:
0.289336477562

7.2.2 Plotting the results using R

A simple way to plot ADMB results using R is to use the R-function writ-
ten by Steve Martell (inspired by some earlier code developed by George
Watters). The function reads the contents of a report file (or any output
file) and stores the contents as an R list-object. The function is capable of
reading single variables, vectors, and 2-D arrays (including ragged arrays).

Note that the output files must conform to the following formatting
(variable name, then new line, then values):

agedata
2 2 2 2 3 3 3 4 4 6 9 10 11 11 15 19 21 24 30 35
lengthdata
1 3 4 4 3 4 5 6 9 10 14 13 16 17 18 19 20 21 20 21
t0
0.929196
k
0.113188
sd
0.289336
Linf

63

22.1727

Formatting and outputting a customized report is accomplished with a few
lines in the template’s REPORT SECTION:

The above template code generates the output file in the required format
and saves it as template-name.rep (e.g., vonbR.rep). The complete template,
modified to format output for use with the R-function, is here.

To use the R-function to “import the data” into R:

1. Copy and paste the following R-code into a text file and save it as
“reptoRlist.R”.

reptoRlist <- function(fn) {
ifile <- scan(fn, what="character", flush=TRUE,

blank.lines.skip=FALSE, quiet=TRUE)
idx <- sapply(as.double(ifile), is.na)
vnam <- ifile[idx] #list names
nv <- length(vnam) #number of objects
A <- list()
ir <- 0
for (i in 1:nv) {

ir <- match(vnam[i], ifile)
if (i!=nv) {
irr <- match(vnam[i+1], ifile)

} else {
irr <- length(ifile)+1 #next row

}
dum <- NA

64

https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/example2/vonbR.tpl

if (irr-ir==2) {
dum <- as.double(scan(fn, skip=ir, nlines=1,
quiet=TRUE, what=""))

}
if (irr-ir>2) {

dum <- as.matrix(read.table(fn, skip=ir,
nrow=irr-ir-1, fill=TRUE))

}
Logical test to ensure dealing with numbers
if (is.numeric(dum)) {

A[[vnam[i]]] <- dum
}

}
return(A)

}

2. Load the function into the R environment. To do so, open the R-
environment and type:

source(file.choose())

Then, using the drop-down menu that appears, navigate to the loca-
tion where the reptoRlist.R function is saved and select it.

3. Use the reptoRlist function to read the data into R by typing the
following line into the R-environment:

A=reptoRlist("filename ")

Where filename is the name of your data file. For example, on a
Windows system, the path might look something like:

A=reptoRlist("C:/ADMB/vonb/vonbR.rep")

4. Once the file has been read into R, the data will be available in the ‘A’
list object. At the R command-prompt, type ‘A’ to view the data:

65

5. To access a value, use the syntax

A$variablename

where variablename is the name of the desired value. To access the
vector of ages, use:

A$agedata

To plot the data and regression line, you could use the following R
code:

plot(A$agedata,
A$lengthdata,
xlab=‘Age (t)’,
ylab=‘Length (Lt)’)

curve(
A$Linf*(1-exp(-A$k*(x-A$t0))),

from=A$agedata[1],
to=A$agedata[20],
xlab=‘Age (t)’,

66

ylab=‘Length (Lt)’,
col=‘mediumblue’,
add=TRUE)

7.3 Example 3: A simple fisheries model: estimat-
ing parameters and uncertainty

The simplified fisheries model examined in this section uses maximum like-
lihood methods to estimate parameter values used to estimate a fish pop-
ulation. The MLE is a prerequisite for the other methods covered in this
section: a profile likelihood and a Bayesian analysis that incorporates pre-
vious results into the analysis using an MCMC algorithm. In addition to
talking a bit about these techniques and how they are accomplished using
AD Model Builder, we will also look at several types of related results files
that are output by the program.

67

A bit about the model

Fishery managers have the tough task of estimating the abundance of
creatures that travel underwater, where they can’t be easily counted. As a
result, a number of useful alternative measurements for understanding and
managing populations have been developed. One such index is the Catch
Per Unit Effort (CPUE), which is assumed to be proportional to abundance.
In this model, the number of fish (Nt) in each study year is estimated using
known survival rates (S), catch data (Ct), and (an estimated) recruitment
rate (R). The estimated population is multiplied by a proportionality con-
stant (q) so that it can be compared to the known CPUE data. Maximum
likelihood methods are then used to estimate the values of the model’s two
unknown parameters: the recruitment rate (R) and the proportionality con-
stant (q). Ultimately, using the estimated R parameter with equations 7.7
and 7.8 in the model, we can look at the changes in fish abundance over the
study period.

The number of fish at time zero is described as

68

N0 =
R

(1− S)
(7.7)

where R is recruitment and S is survival. The survival rate is known; the
recruitment will be estimated in the regression.

The number of fish in each subsequent year is then assumed to be

Nt+1 = NtS +R− Ct (7.8)

where Ct is the catch rate. The catch rate for each time period is available
in the data set.

The value of N is then adjusted to be equivalent to the CPUE index

It = qNtexp[εt)] (7.9)

where I is the CPUE index, q is a constant of proportionality estimated by
the regression, and εt is a measure of error.

The error is assumed to be normally distributed with a mean of 0 and a
standard deviation σ, which is known

εt ∼ N(0, σ2) (7.10)

The form of the negative log-likelihood that we will minimize (without con-
stants, σ known) is:

−lnL =
(ln[It]− ln[qNt])

2

2σ2 (7.11)

7.3.1 Maximum likelihood estimate (fish.tpl)

In this example, the data includes CPUE and catch data for each of the
26 study years, as well as the survival rate, which is assumed to be con-
stant. Click here to see the data file. The parameters to be estimated are
R (the recruitment rate) and q (the proportionality constant). Initial pa-
rameter values for both R and q are provided in the .pin file: 300 and .001,
respectively.

69

https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/example3/fish.dat
https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/example3/fish.pin

The AD Model Builder template (fish.tpl) that will calculate the es-
timated fish populations for each study year uses maximum likelihood to
estimate the q and R parameters is:

The data is read in via the DATA SECTION. No transformation is required.

The two estimated parameters (R and q), as well as a vector, N, that
will contain the estimated abundance values, are defined in the PARAME-
TER SECTION. The objective function, f, is also defined.

70

https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/example3/fish.tpl

The PROCEDURE SECTION contains all the C code needed to calcu-
late the estimated abundance values and to perform the maximum likelihood
analysis:

Line [1] sets the objective function (f) to zero so that each iteration of the
minimization routine will start with a “clean slate.” The code in line [2]
uses Equation 7.7 to estimate the abundance for the initial year. Lines 3-6
use a for-loop to calculate the abundance for the subsequent years (using
Equation 7.8). Lines 7-10 also use a for-loop, this time to loop through each
year and minimize the negative log-likelihood function. Because we know σ,
we can minimize the negative log-likelihood function of the form 7.11. Note
that CPUE(obs, 1) is equal to the first column of data in the CPUE matrix,
which simply contains the year indices that run from 1 to 26.

Compiling the template and executing the program produces the follow-
ing results (fish.par):

R:
272.858848131
q:
0.000821746937564

The estimated fish population for each year (N) is output in the REPORT SECTION
and will appear in the fish.rep file.

71

7.3.2 Likelihood Profile and Bayesean posterior analysis

Bayesean analyses are useful for a number of reasons: they can be used to in-
clude information from previous studies, estimate uncertainty, and calculate
the probabilities of alternative hypotheses. When we perform a Bayesian
analysis, we generate a “posterior distribution” that describes the probabil-
ity assigned to each possible hypothesis in light of the collected data.

Bayesean analysis is based on Bayes’ theorem:

Pr{B|A} =
Pr{A,B}
Pr{A}

=
Pr{A|B}Pr{B}

Pr{A}
(7.12)

From Bayes’ theorem, we can draw the conclusion that the probabilities
in the posterior distribution (e.g., the probability of each hypothesis given
the data) are proportional to the product of each likelihood and prior prob-
ability. (For a more thorough look at Bayes’ theorem and how it is used,
please see The Ecological Detective by Hilbon and Mangel.)

Pr{H1|data} =
L {H1, data}Pr{H1}

Pr{data}
(7.13)

Note that when using Bayesean analysis, we must provide “priors”—the
prior probability of each parameter, which doesn’t take into account the
new observations. The prior probability can be specified with a probability
density distribution (e.g., a normal distribution with a mean that represents
the most probable value of the parameter, and a standard deviation that
represents our prior uncertainty in this parameter). Often, we have no prior
information about a parameter, and in that case, we attempt to use an
“uninformative prior” that will not affect the estimation of the quantities of
interest. Two standard ‘uninformative‘ priors are uniform and uniform on
the log scale.

In this example, we will again estimate q and R, only this time we will
provide priors for each parameter. The prior R is assumed to be normally dis-
tributed with a mean and standard deviation supplied (Rmean and Rsigma),
and the prior q is uniformly distributed. Note that alternative values for
a log-uniform scale are included in the comments in the data file. To see

72

how assumptions about a parameter distribution affect the analysis, we rec-
ommend that you try running the example using both the uniform and
log-uniform priors for q.

Click here to view the data file and the .pin file.

Although we are estimating both q and R, we are ultimately most inter-
ested in R because we are using it to generate our fish population estimates.
In order to look more closely at R and determine how likely each estimated
value is, the template also generates a likelihood profile for the parame-
ter. The likelihood profile allows us to examine how the model’s likelihood
changes as parameter values are changed, and to generate confidence in-
tervals on estimated parameters. Once AD Model Builder has generated
the likelihood profile, it can also generate a Bayesian posterior distribution
using a Markov Chain Monte Carlo (MCMC) algorithm. The MCMC anal-
ysis is easily initiated and customized by the user with a few command-line
options.

Click here to see the complete template (bayes.tpl) used in the analysis.
Notice that the DATA SECTION now contains the new prior data for R and
q:

The R and q parameters are initialized in the PARAMETER SECTION.
Note that they are both specified as bounded numbers with lower and upper
bounds to constrain the range of possible values to a realistic interval. qtemp
is used in the PROCEDURE SECTION to convert the q distribution from
uniform to log-uniform if the log-uniform scale is specified.

Note that AD Model Builder will automatically generate a likelihood
profile for any parameter defined as “likeprof number” in the PARAME-
TER SECTION when the -lprof command-line option is used during run-
time (e.g., bayesfish -lprof). The likelihood profile variable must be
defined in the PARAMETER SECTION and set equal to the parameter of

73

https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/example3/bayes.dat
https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/example3/bayes.pin
https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/example3/bayes.tpl

interest in the PROCEDURE SECTION (we’ll look at that in a moment).
As in the previous example, the vector N is defined and used to store pop-
ulation estimates generated from the model. The objective function, f, is
also defined.

The PROCEDURE SECTION is much like the one used in the previous
example with a couple additions: on line [2], Rtemp=R; is used to assign the
likeprof number defined in the PARAMETER SECTION to the parameter
of interest (R) so that AD Model Builder knows the parameter for which to
generate the likelihood profile. Lines [8] and [9] are used to transform the
value of q from uniform to log-uniform, depending on the value of qtype. In
our data set, the value of qtype is specified as 0, so no transformation will
be performed. Finally, line [14] is used to calculate the maximum likelihood
estimate of R and its posterior distribution based on current estimates and
prior values.

Compile the template with the command: makeadm bayesfish, where
bayesfish is the name of the template without its .tpl extension. To run
the program and generate a likelihood profile report, use the -lprof option
at the command line:

74

C:\ADMB\MinGW\>bayesfish -lprof

When the -lprof option is used, AD Model Builder will generate a .plt file
that contains the likelihood profile results for any parameter designated as
a likeprof number in the template. The report is named after the estimated
parameter. In this case, the file will be named “Rtemp.plt”. Note that in
this example, the likelihood report for Rtemp will include the effects of the
prior information. To see a likelihood report that does not include prior
information, you could define Rtemp as a likelihood profile variable in the
previous example (fish.tpl). An example of a likelihood profile report is
included in Section 7.3.3.

If you would like to adjust the number or size of steps used in the like-
lihood profile calculation, add the following lines to the template after the
PARAMETER SECTION:

PRELIMINARY_CALCS_SECTION
Rtemp.set_stepnumber(10); //default value is 8
Rtemp.set_stepsize(0.1); // default value is 0.5.
//Note: the stepsize is in standard deviation units.

In addition to the likelihood profile, AD Model Builder will also gen-
erate the standard output files (.par, .cor, .std). The parameter estimates
contained in the bayesfish.par file are:

R:
276.553534814
q:
0.000805865729783

To create a posterior probability distribution using AD Model Builder’s
MCMC algorithm, simply run the program with the -mcmc command-line
option:

bayesfish -mcmc 10000 -mcsave 100

The -mcmc option initiates the MCMC algorithm (AD Model Builder uses
the Metropolis-Hastings algorithm). The number following the -mcmc op-
tion (10000, in this case) specifies the number of samples (i.e., sets of pa-
rameter values) to take when the model is run. The second option, -mcsave
100, tells AD Model Builder how often to save the samples. In this case,
ADMB will save the result of every 100th simulation, essentially “thinning”
the chain and reducing auto-correlation. To save every value, use -mcsave
1

75

After the MCMC algorithm has run, the saved results can be used by
running the model again with the -mceval option:

bayesfish -mceval

The -mceval option will evaluate a user-supplied function specified in the
template once for every saved simulation value. The function mceval phase()
can be used in the template as a “switch” that is activated when AD Model
Builder is performing an -mceval operation:

if (mceval_phase())
{
ofstream out("posterior.dat",ios::app);
out<<R<<" "<<q<<" "<< N<<endl;
out.close();
}

The above code instructs AD Model Builder to create an output file
named “posterior.dat” and to write the values of R, q, and N to the file
when a user evaluates the results generated by the MCMC analysis.

Note: the results generated by the MCMC algorithm are saved in a
binary file root.psv (e.g., bayesfish.psv). For information about converting
this file into ASCII, please see the User Manual. The .psv report can also
be read into R with the following lines of R-code:

filen <- file("your.psv ", "rb")
nopar <- readBin(filen, what=integer(), n=1)
mcmc <- readBin(filen, what=numeric(), n=nopar * 10000)
mcmc <- matrix(mcmc, byrow=TRUE, ncol=nopar)

76

7.3.3 Report: Profile likelihood report (.plt)

The profile likelihood report contains the value and corresponding proba-
bility for the profiled variable (in this example, Rtemp). The report also
contains lower and upper bounds that correspond to 90%, 95% and 97.5%
confidence limits, as well as either lower or upper bounds for one-sided con-
fidence limits. At the bottom of the report is the normal approximation of
the probabilities and confidence levels obtained from the parameter values
and their covariances. The following report is (an abridged version of) the
report generated by the bayesfish example in this chapter.

Rtemp:
Profile likelihood
. . .
250.752 0.00678057
253.468 0.00717952
256.184 0.00757846
258.9 0.00797741
261.616 0.00837635

77

264.332 0.00877529
267.048 0.00917424
268.406 0.00922056
269.764 0.00926688
271.122 0.0093132
272.48 0.00935952
273.838 0.00940584
275.196 0.00945216
276.554 0.00949848
. . .

Minimum width confidence limits:
significance level lower bound upper bound

0.9 223.593 379.097
0.95 219.52 409.438
0.975 205.094 430.002

One sided confidence limits for the profile likelihood:

The probability is 0.9 that Rtemp is greater than 247.276
The probability is 0.95 that Rtemp is greater than 236.936
The probability is 0.975 that Rtemp is greater than 228.573

The probability is 0.9 that Rtemp is less than 369.234
The probability is 0.95 that Rtemp is less than 396.955
The probability is 0.975 that Rtemp is less than 419.396

Normal approximation
. . .
261.616 0.00925701
264.332 0.00956935
267.048 0.00988169
268.406 0.00992652
269.764 0.00997134
271.122 0.0100162
272.48 0.010061
273.838 0.0101058
275.196 0.0101506
276.554 0.0101955
277.911 0.0101506

78

279.269 0.0101058
280.627 0.010061
281.985 0.0100162
283.343 0.00997134
. . .
Minimum width confidence limits:
significance level lower bound upper bound

0.9 204.167 344.451
0.95 192.361 356.733
0.975 181.645 366.178

One sided confidence limits for the Normal approximation:

The probability is 0.9 that Rtemp is greater than 226.407
The probability is 0.95 that Rtemp is greater than 212.012
The probability is 0.975 that Rtemp is greater than 200.051

The probability is 0.9 that Rtemp is less than 332.121
The probability is 0.95 that Rtemp is less than 347.48
The probability is 0.975 that Rtemp is less than 357.086

7.3.4 Report: Markov Chain Monte Carlo (MCMC) report
(.hst)

The .hst report contains information about the MCMC analysis: the sample
sizes (specified with the -mcmc command-line option), the step size scaling
factor, the step sizes, and information about the posterior probability dis-
tribution (e.g., the mean, standard deviation, and lower and upper bounds).

For each simulated parameter, a range of values (with step sizes reported
in the ”step sizes” section of the .hst file) and their simulated posterior
probabilities is reported. Plotting the first column (parameter values) on
the x-axis and the second column (simulated probabilities) on the y-axis
can be a convenient way to make a visualization of the posterior probability
distribution.

samples sizes
100000
step size scaling factor
1.2
step sizes

79

14.7402
means
310.04
standard devs
117.995
lower bounds
-17
upper bounds
21
#number of parameters
3
#current parameter values for mcmc restart
0.803384 351.456 -7.83507
#random nmber seed
1648724408
#Rtemp
. . .
177.379 0.000232697
192.119 0.000357526
. . .

7.4 Example 4: Simulation testing

In this section, we will look at how to generate random numbers in ADMB,
and how to use them to simulate data sets that can be used to test the fit
of a model.

7.4.1 Simulating data: Generating random numbers

Random numbers can be generated with the random number generator
class:

random number generator rng(n);

where n is the seed that initializes the random number generator.
The following script demonstrates how to generate a sample of five

random values from each of the uniform, normal, poisson, negative bino-
mial, standard Cauchy, binomial, and multinomial distributions. The ran-
dom seed (rng) is defined on the first line of the LOCAL CALCS section
(123456). The template directs ADMB to write the output (displayed be-
low the script) to the screen. Note that when you use LOCAL CALS and

80

END CALS in the DATA SECTION, you must indent the LOCAL CALS
identifier one space.

following The script produces the below output:

Uniform(0,1): 0.779837 0.229835 0.0126429
0.714228 0.654815
Normal(0,1): -0.325127 1.03682 0.567672
-0.670345 2.89024
pois(1.5): 2 2 0 1 2
neg.bin(1.5,2): 0 3 1 0 4

81

Cauchy: -0.188267 -1.30511 -9.11156
29.8652 2.83259
binomial(n=1,p=0.8): 1 1 0 0 1
multinomial(n=1,p=(.01,.495,.495)): 3 2 3 2 3

In the next section, we will look at an example that uses the ran-
dom number generator to generate a vector of random values used in a
simulation.

7.4.2 Simulation testing: Estimating plant yield per pot from
pot density

In this example, we will create a randomly generated data set to help eval-
uate the fit of a model. First, however, we must fit an actual data set to
the model and estimate the corresponding parameter values. In this case,
we’ll look at a model that describes the relationship between the density of
plants per pot and the plant yield per pot, which is assumed to be:

log(Yi) = − log(α + β ∗Di) + εi (7.14)

where Di is the observed density, Yi is the yield, and εi ∼ N(0, σ2)

The data set used in this example consists of ten observations of pot
density and corresponding yield data. Click here to see the data file, pot-
density.dat.

The following template (potdensity.tpl) uses maximum likelihood to es-
timate α, β and σ.

82

https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/example4/potdensity.dat
https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/example4/potdensity.dat
https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/example4/potdensity.tpl

The program returns the following parameter estimates:

index name value std dev
1 logA -1.9044e+000 1.0966e-001
2 logB -3.6793e+000 6.7797e-002
3 logSigma -1.9246e+000 2.2361e-001
4 a 2.2708e-002 2.1107e-002
5 b 2.5241e-002 1.7113e-003
6 sigma 1.4594e-001 3.2633e-002

83

Using the estimated parameters, we can now generate a random set of
values for the dependent variable (yield) using the random number generator
function. The only part of the template that changes is the DATA SECTION:

The random number generator uses the specified seed, 123456, to generate
a vector of normally distributed values between 0 and 1, which is assigned
to the vector logYield. Each random value is then multiplied by the stan-
dard deviation (.15) and then added to the estimated yield (log(Yi)) that is
calculated using the parameter estimates generated for a and b. The pro-
gram can now use the randomly adjusted yield values when it calculates

84

the parameter estimates, and we can compare the results from the original
and the simulated output. Compiling and running the simulation program
produces the following results:

index name value std dev
1 logA -1.8823e+000 8.1064e-002
2 logB -3.6725e+000 5.0495e-002
3 logSigma -2.2184e+000 2.2361e-001
4 a 2.5178e-002 1.5895e-002
5 b 2.5412e-002 1.2832e-003
6 sigma 1.0878e-001 2.4324e-002

Change the random seed several times to generate several different sets
of random data. Click here to see the template and data file used for the
simulation.

85

https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/example4/potdensitySim.tpl
https://code.nceas.ucsb.edu/code/projects/admb-docs/examples/example4/potdensitySim.dat

86

Chapter 8

Useful operators and
functions

Note: This reference was originally compiled by C.V. Minte-Vera in 2000
and expanded for this guide.

8.1 Useful ADMB Functions

Table 8.1 contains some useful functions that can be used in ADMB tem-
plates.

Table 8.1: Useful ADMB functions

Function Definition
active(Par) Returns a binary: “true” (1) if the parameter

Par is active in the current phase and “false”
(0) otherwise.

Bolinha.initialize() Initializes the object bolinha. When an ob-
ject is initialized, all elements are set equal
to zero.

column(matrix, index) Extracts the indexed column from the ma-
trix. For an example, please see Figure 4.3.

extract row(matrix, index) Extracts the indexed row from the matrix.
Continued on next page

87

Table 8.1 – continued from previous page
Function Definition
current phase() Returns an integer that is the value of the

current phase.
exp(x) Returns e raised to the power x.
last phase() Returns a binary: “true” (1) if the current

phase is the last phase and “false” (0) other-
wise.

log(x) Returns the natural log of x. For an example,
see 7.2.1.

mceval phase() Returns a binary: “true” (1) if the current
phase is the mceval phase and “false” (0) oth-
erwise. For an example, see 7.3.2.

mfexp(x) Returns the exponential of x, element by el-
ement. x can be real or complex.

posfun(x,eps,pen) The posfun() function is used to ensure that
a value remains positive. The syntax is y =
posfun(x,eps,pen), where y <= x and >=
eps and pen is a penalty function whose
value is 0.01*square(x-eps). x and pen are
dvariables. Before calling posfun(), set pen
= 0.

pow(base, exp) Returns the base raised to the power exp. For
an example, see Section 7.1.1

regression(x) Calculates the log-likelihood function of
the nonlinear least-squares regression.
For an example of the regression and
robust regression functions, please see
Chapter One of the ADMB User Manual.

sqrt(x) Returns the square root of x.

square(x) Returns the square of x. For an example, see
Section 7.1.2

8.2 Useful Vector Operations

Table 8.2 contains some common vector operations.

Let V,X,Y be vectors and vi, wi, yi be the elements of the

88

vectors
Let M,N,A be matrices and mif, mij, aij be the elements of
the matrices
Let nu be a scalar (number)

Note: In cases where there are several ways to code an operation in
ADMB, the more efficient ADMB code is indicated in blue beneath the less
efficient code.

Table 8.2: Useful Vector Operations

Vector Operation Mathematical ADMB code
Notation

Addition
vector + vector vi = xi+ yi V=X+Y

X+=Y
scalar + vector vi = xi+ nu V = X + nu

X+=nu
sum of vector elements nu =

∑
ivi nu=sum(V)

Subtraction
vector - vector vi = xi− yi V=X-Y

X-=Y
vector - scalar vi = xi− nu V=X-nu

X-=nu

Multiplication
scalar * vector xi = nu ∗ yi X=nu*Y

Y*=nu
vector * scalar xi = yi ∗ nu X=Y*nu
vector * matrix xj =

∑n
i=1 yi ∗mij X=Y*M

matrix * vector xi =
∑n

j=1mij ∗ yi X=M*Y

Division
vector / scalar yi = xi/nu Y=X/nu

X/=nu
scalar/ vector yi = nu/xi Y=nu/X

Continued on next page

89

Table 8.2 – continued from previous page
Vector Operation Mathematical ADMB code

Notation

Element-wise (e-w) operations(vectors must have the same dimensions)
e-w multiplication vi = xi ∗ yi V=elem prod(X,Y)
e-w division vi = xi/yi V=elem div(X,Y)

Other Operations
Concatenation X = (x1, x2, x3) V=X&Y

Y = (y1, y2)
V = (x1, x2, x3, y1, y2)

Dot Product nu =
∑
xi ∗ yi nu=X*Y

Maximum Value nu=max(V)
Minimum Value nu=min(V)

Norm nu =
√

(
∑n

i=1 vi
2) nu=norm(V)

Norm Square nu =
∑n

i=1 vi
2 nu=norm2(V)

Outer Product mij = xi ∗ yi M=outer prod(X,Y)

8.3 Useful Matrix Operations

Table 8.3 contains some common matrix operations.

Let V,X,Y be vectors and vi, wi, yi be the elements of the
vectors
Let M,N,A be matrices and mif, mij, aij be the elements of
the matrices
Let nu be a scalar (number)

Note: In cases where there are several ways to code an operation in
ADMB, the more efficient ADMB code is indicated in blue beneath the less
efficient code.

90

Table 8.3: Useful Matrix Operations

Matrix Operation Mathematical ADMB code
Notation

Addition
matrix + matrix aij = mij + nij A=M+N
scalar + matrix aij = mij + nu A=M+nu

M+=nu

Subtraction
matrix - scalar aij = mij − nu A=M-nu

M-=nu
matrix - matrix aij = mij − nij A=M-N

M-=N

Multiplication
scalar * matrix mij = nu ∗ aij A=nu*M

M*=nu
vector * matrix xj =

∑n
i=1 yi ∗mij X=Y*M

matrix * vector xi =
∑n

j=1mij ∗ yi X=M*Y

matrix * matrix aif =
∑n

k=1mik ∗ nkj A=M*N

Division
matrix / scalar mij = aij/nu M=N/nu

Element-wise (e-w) operations(matrices must have the same dimensions)
e-w multiplication mij = aij ∗ nij M=elem prod(A,N)
e-w division mij = aij/nij M=elem div(A,N)

Other Operations
column sum yj =

∑n
i=1mij Y=colsum(M)

determinant of symmet-
ric matrix

nu=det(M)

eigenvalues of a sym-
metric matrix

V=eigenvalues(M)

eigenvectors of a sym-
metric matrix

N=eigenvectors(M)

Continued on next page

91

Table 8.3 – continued from previous page
Matrix Operation Mathematical ADMB code

Notation
identity matrix function M=identity matrix(int

min, int max)
inverse of a symmetric
matrix

N=inv(M)

log of the determinant nu=ln det(M,sgn)
(sgn is an integer)

norm nu =√∑n
i=1

∑m
j=1mij

2

nu=norm(M)

norm square nu =
∑n

i=1

∑m
j=1mij

2 nu=norm2(M)

row sum xi =
∑n

j=1mij nu=rowsum(M)

92

	What is AD Model Builder?
	Features
	About this Document
	Additional Resources

	Installation
	System requirements
	Installing ADMB
	Windows
	Linux

	Working with AD Model Builder
	Opening AD Model Builder
	Overview: From question to result

	Creating a program: The template
	Data section (and data file)
	Parameter section (and initial parameter values file)
	Procedure section
	Non-required template sections

	Compiling and running a program
	Compiling a program
	Running a program and command-line options
	Errors, debugging, and memory management

	The results: AD Model Builder output files
	Parameter estimate file (.par)
	Standard deviation report file (.std)
	Correlation matrix file (.cor)
	User-defined output file (.rep)
	Outputting results for R

	Examples
	Example 1: Least-squares regression
	Using sum of squares
	Using matrix algebra with sum of squares
	Standard Deviation Report (.std)

	Example 2: Nonlinear regression with MLE: Fitting a Von Bertalanffy growth curve to data
	Using phases and bounds
	Plotting the results using R

	Example 3: A simple fisheries model: estimating parameters and uncertainty
	Maximum likelihood estimate (fish.tpl)
	Likelihood Profile and Bayesean posterior analysis
	Report: Profile likelihood report (.plt)
	Report: Markov Chain Monte Carlo (MCMC) report (.hst)

	Example 4: Simulation testing
	Simulating data: Generating random numbers
	Simulation testing: Estimating plant yield per pot from pot density

	Useful operators and functions
	Useful ADMB Functions
	Useful Vector Operations
	Useful Matrix Operations

